Klasifikasi Tanaman Liar sebagai Tanaman Obat menggunakan Metode Convolutional Neural Network dengan Arsitektur Resnet-50

Fiekri, Moch. Iqbal Maulana (2025) Klasifikasi Tanaman Liar sebagai Tanaman Obat menggunakan Metode Convolutional Neural Network dengan Arsitektur Resnet-50. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (350kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (416kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (292kB)
[img] Text (Laporan Lengkap)
E41210746 - Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (6MB) | Request a copy

Abstract

Wild plants are often an underutilized natural resource in the health sector. Many wild plants have potential as medicinal plants, but the identification and classification of these wild plant species can be a complicated and time-consuming task. The use of technology in wild plant identification, especially in the context of their use as medicinal plants, can provide an efficient and effective solution. The results of this experiment using CNN method with Resnet-50 architecture show consistency and superiority over others. A total of 1,200 leaf images from six types of medicinal plants, namely gotu kola, brotowali, minjangan grass, sembung rambat, rambusa, and tumpang air, were used as datasets. The training results showed that the model achieved an accuracy of 97.91% and a continuously decreasing error rate, indicating a stable and accurate model performance.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorFitri, Zilvanhisna EmkaNIDN0002039203
Uncontrolled Keywords: Tanaman liar, Tanaman obat, Klasifikasi, Convolutional Neural Network, Identifikasi, Pengenalan pola.
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Moch. Iqbal Maulana Fiekri
Date Deposited: 23 Jul 2025 01:57
Last Modified: 23 Jul 2025 01:58
URI: https://sipora.polije.ac.id/id/eprint/44223

Actions (login required)

View Item View Item