Klasifikasi Penyakit Kanker Payudara Berdasarkan Berkas Rekam Medis Pasien Rawat Inap Menggunakan Algoritma C4.5 Di Rumah Sakit Baladhika Husada Jember

Amalia, Wa Ode Rezky (2025) Klasifikasi Penyakit Kanker Payudara Berdasarkan Berkas Rekam Medis Pasien Rawat Inap Menggunakan Algoritma C4.5 Di Rumah Sakit Baladhika Husada Jember. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Ringkasan / Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (60kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan .pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (151kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (209kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (4MB) | Request a copy

Abstract

Cancer is a disease that occurs due to abnormal growth of body tissue cells that turn into cancer cells during their development. These cancer cells can spread to other parts of the body and can cause death. Based on data on the top ten inpatient diseases at Baladhika Husada Jember Hospital, breast cancer ranked first with a total of 8,194 cases during the period 2021 to 2023. In addition, the mortality rate due to this disease shows an increasing trend, namely 15 deaths in 2021, 18 deaths in 2022, and reaching 20 deaths in 2023. This study aims to classify breast cancer based on risk factors and symptoms using the C4.5 algorithm, a data mining method. The modeling was conducted using RapidMiner software with a crossvalidation approach and model performance evaluated using a confusion matrix. The dataset consists of 302 records with 11 attributes. The results of the testing show that the C4.5 model achieved an accuracy of 78.15%, precision of 78.91%, and recall of 76.82%. The decision tree formed places the attribute of personal history of breast cancer as the root of the tree with the highest gain ratio of 0.1840 and produces 34 classification rules.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorPrakoso, Bakthtiyar HadiNIDN0704048803
Uncontrolled Keywords: C4.5, Kanker Payudara, Cross Validation
Subjects: 340 - Rumpun Ilmu Kesehatan > 350 - Ilmu Kesehatan Umum > 351 - Kesehatan Masyarakat
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
Divisions: Jurusan Kesehatan > Prodi D4 Manajemen Informasi Kesehatan > Tugas Akhir
Depositing User: Wa Ode Rezky Amalia
Date Deposited: 25 Jun 2025 07:26
Last Modified: 25 Jun 2025 07:27
URI: https://sipora.polije.ac.id/id/eprint/42411

Actions (login required)

View Item View Item