Penerapan Aritificial Intelligence Pada Ekstraksi Data Dokumen Sistem Pemerintahan Berbasis Elektronik Menggunakan Metode Forward chaining

Setyawan, Ricky Dwi (2025) Penerapan Aritificial Intelligence Pada Ekstraksi Data Dokumen Sistem Pemerintahan Berbasis Elektronik Menggunakan Metode Forward chaining. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Ringkasan / Abstract)
abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (11kB)
[img] Text (Bab 1 Pendahuluan)
bab 1.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (21kB)
[img] Text (Daftar Pustaka)
dafpus.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (70kB)
[img] Text (Laporan Lengkap)
Skripsi_Ricky_Dwi_S_REVISI.pdf - Submitted Version
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

This research aims to apply Artificial Intelligence (AI) for data extraction from documents in the Electronic-Based Government System (SPBE) using Forward chaining and Transformers methods. The developed system is designed to reduce human errors in document management and speed up information retrieval processes. The Forward chaining method is applied in a rule-based chatbot that provides quick responses based on user-selected options. Meanwhile, the Transformers method uses the IndoBERTQA model to understand questions more contextually through an attention mechanism. Additionally, the data extraction from PDF documents is carried out using the PyPDF2 library, enabling text extraction that can be directly displayed on the web interface, facilitating easier access to information for users. The results of the study show that while both methods have their strengths and limitations Forward chaining is fast but lacks flexibility, while Transformers is more flexible but requires more training data and processing time the PDF extraction system performs reasonably well, although challenges remain in handling table and image formats. This research provides a significant contribution to optimizing AI technology implementation in managing SPBE documents

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorAtmadji, Ery Setiyawan JullevNIDN0010078903
Uncontrolled Keywords: Kecerdasan Buatan, Sistem Pemerintahan Berbasis Elektronik (SPBE), Ekstraksi Data, Forward chaining, Transformers, PyPDF2, Python
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > PKL
Depositing User: Ricky Dwi Setyawan
Date Deposited: 16 May 2025 05:29
Last Modified: 16 May 2025 05:31
URI: https://sipora.polije.ac.id/id/eprint/41029

Actions (login required)

View Item View Item