Rancang Bangun Prototype Alat Pengendali Suhu dan Kelembaban di Gudang Tembakau dengan Pendekatan Adaptive Neuro Fuzzy Inference System (Anfis)

Hakim, Thoriq Lukman (2025) Rancang Bangun Prototype Alat Pengendali Suhu dan Kelembaban di Gudang Tembakau dengan Pendekatan Adaptive Neuro Fuzzy Inference System (Anfis). Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (153kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (162kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (170kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

The tobacco industry in Indonesia plays a significant role in the economy. However, the monitoring and controlling systems of storage warehouses, such as those at PT. Mangli Djaya Raya Warehouse in Jember, are still conducted manually without intelligent systems, making environmental condition assessments less accurate. This study aims to develop an Internet of Things (IoT)-based system utilizing the Adaptive Neuro-Fuzzy Inference System (ANFIS) to automatically control temperature and humidity. ANFIS combines artificial neural networks (ANN) and fuzzy logic with an architecture similar to the Sugeno fuzzy model. The DHT22 sensor is used to measure temperature and humidity after undergoing a calibration process to improve accuracy. The calibration results show a Mean Absolute Error (MAE) of 1.68% for temperature and 3.16% for humidity. The ANFIS method effectively controls fans based on temperature and humidity parameters, achieving a MAE of 9 %. Implementing this system enables more adaptive and intelligent decision-making in automatically activating or deactivating fans/exhaust to prevent potential issues in tobacco storage warehouses.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorUtomo, Denny TriasNIDN0009107104
Uncontrolled Keywords: Tembakau, Monitoring, Internet of Things, DHT22, Adaptive Neuro-Fuzzy Inference System (ANFIS).
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Thoriq Lukman Hakim
Date Deposited: 06 May 2025 02:49
Last Modified: 06 May 2025 02:50
URI: https://sipora.polije.ac.id/id/eprint/40920

Actions (login required)

View Item View Item