Mauliyah, Sekar (2024) Analisis Sentimen Program Merdeka Belajar Kampus Merdeka Pada Pengguna Twitter Menggunakan Metode Naive Bayes. Undergraduate thesis, Politeknik Negeri Jember.
Text (Abstract)
Abstract.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (31kB) |
|
Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (116kB) |
|
Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (158kB) |
|
Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version Restricted to Registered users only Download (6MB) | Request a copy |
Abstract
This study aims to analyze the sentiments of Twitter users towards the Merdeka Belajar Kampus Merdeka Program using the Naïve Bayes method. The background of this research is the launch of the Merdeka Belajar Kampus Merdeka Program by the Ministry of Education and Culture of the Republic of Indonesia, which aims to provide freedom and flexibility to higher education institutions and encourage innovation in the learning process. Given the high level of public interaction on social media, particularly Twitter, sentiment analysis of this program is crucial to understanding public perceptions and responses to the policy. The data used in this study consists of 1486 tweets, with 309 tweets containing negative sentiment, 379 tweets containing positive sentiment and 780 tweets neutral. The analysis process involved data collection, text preprocessing, and applying the Naïve Bayes algorithm for sentiment classification. The results indicate that the model achieved an accuracy of 67.35%, precision of 64.09%, and recall of 67.35%. This study provides insights into public perceptions of the Merdeka Belajar Kampus Merdeka Program and demonstrates that the Naïve Bayes method can be effectively used for sentiment analysis on social media. This research is expected to offer valuable input for policymakers and stakeholders in evaluating and developing the program.
Item Type: | Thesis (Undergraduate) | ||||||
---|---|---|---|---|---|---|---|
Contributors: |
|
||||||
Uncontrolled Keywords: | AnalisisSentimen,MBKM,Twitter,NaiveBayes | ||||||
Subjects: | 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi |
||||||
Divisions: | Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir | ||||||
Depositing User: | Sekar Mauliyah | ||||||
Date Deposited: | 15 Jul 2024 03:28 | ||||||
Last Modified: | 15 Jul 2024 03:29 | ||||||
URI: | https://sipora.polije.ac.id/id/eprint/34061 |
Actions (login required)
View Item |