Deteksi Level Kerusakan Jalan Berbasis IoT Berdasarkan Analisa Pavement Condition Index (PCI)

Fahar Laila, Abhinaya (2025) Deteksi Level Kerusakan Jalan Berbasis IoT Berdasarkan Analisa Pavement Condition Index (PCI). Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (242kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (311kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (205kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf
Restricted to Registered users only

Download (3MB) | Request a copy

Abstract

This research aims to develop an Internet of Things (IoT)-based road damage level detection system using Pavement Condition Index (PCI) analysis for efficient road condition assessment. The system integrates ESP8266 as the input/feedback control unit and ESP32-CAM for damage image acquisition. A Python script modeled after YOLOv8 processes the images to detect the five main types of damage and estimate their dimensions. The results are sent to a PHP/MySQL website for storage, PCI calculation (simplified method), and visualization. The system implementation shows integrated functionality from acquisition to result presentation. Tests on 50 test image samples showed that the accuracy of damage classification by YOLOv8 reached 88%. The limited resolution of the ESP32-CAM camera and variations in environmental lighting were identified as the main factors affecting the detection accuracy. Nonetheless, the system successfully provided an initial quantitative picture of road conditions, demonstrating the potential of IoT and deep learning for the automation of road damage surveys.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorPurbaningtyas, S.Kom., M.T.,, RaniNIDN0012038203
Uncontrolled Keywords: Road Damage Detection, Internet of Things, Pavement Condition Index (PCI), YOLO, ESP32-CAM.
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 463 - Teknik Perangkat Lunak
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika (Sidoarjo) > Tugas Akhir
Depositing User: Abhinaya Fahar Laila
Date Deposited: 05 Aug 2025 00:55
Last Modified: 05 Aug 2025 00:55
URI: https://sipora.polije.ac.id/id/eprint/45312

Actions (login required)

View Item View Item