Analisis Sentimen Aplikasi Sosial Media Bimbingan Belajar Online Menggunakan Metode K-Nearest Neighbors(KNN)

Zahro, Khairatuz (2025) Analisis Sentimen Aplikasi Sosial Media Bimbingan Belajar Online Menggunakan Metode K-Nearest Neighbors(KNN). Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (30kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (34kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (167kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

This study discusses sentiment analysis of user comments on the Pahamify application using the K-Nearest Neighbors (KNN) algorithm. A total of 1,200 Indonesian-language comments were collected, and after preprocessing, 1,173 labeled data (positive, negative, neutral) from expert annotation were obtained. The data was split into 80% for training and 20% for testing. The KNN model was trained to recognize sentiment patterns based on feature weighting using TF-IDF. To address class imbalance, the SMOTE method was applied, and Chi-Square testing was used for important feature selection. The model was tested using K values ranging from 1 to 18. The best result was achieved at K = 7, with an accuracy of 73% and the highest F1-Score of 80% in the positive class. These results indicate that the KNN model can effectively learn sentiment characteristics, particularly in recognizing positive sentiment.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorRahmat Hartadi, S.kom, MT, DiditNIDN0029097704
Uncontrolled Keywords: Sentiment Analysis, KNN, TF-IDF, SMOTE, Chi-Square, Pahamify
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 457 - Teknik Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
710 - Rumpun Ilmu Pendidikan > 790 - Ilmu Pendidikan > 792 - Pendidikan Luar Sekolah
710 - Rumpun Ilmu Pendidikan > 790 - Ilmu Pendidikan > 798 - Teknologi Pendidikan
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Khairatuz Zahro
Date Deposited: 10 Jul 2025 03:44
Last Modified: 10 Jul 2025 03:45
URI: https://sipora.polije.ac.id/id/eprint/43379

Actions (login required)

View Item View Item