Komparasi Algoritma Machine Learning Untuk Mendeteksi Citra Histopatologi Kanker

Zahro, Savina (2024) Komparasi Algoritma Machine Learning Untuk Mendeteksi Citra Histopatologi Kanker. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (8kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (89kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (155kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (13MB) | Request a copy

Abstract

The study compares the performance of machine learning algorithms for cancer classification in histopathology images. The algorithms compared Gray Level Co-Occurrence Matrix (GLCM) + Learning Vector Quantization (LVQ) with two feature selection is Principal Component Analysis (PCA) and regression analysis, as well as Convolution Neural Network (CNN) with a modified ResNet50V2 architecture. Evaluation was carried out on breast and cervical cancer datasets (train 90%, test 10% for GLCM+LVQ, and train 70%, valid 20%, test 10% for CNN). The results showed that the algorithm with the ResNet50V2 CNN model was superior in cancer histopathology classification compare to GLCM+LVQ. CNN ResNet50V2 achieved 87% accuracy for histopathology images of breast and 95% for cervical cancer, while GLCM+LVQ with PCA feature selection only achieved 57,5% for breast and 65% for cervix. ResNet50V2 CNN can be a more effective choice for cancer classification in histopathology images

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorArifianto, Aji SetoNIDN0028118502
Uncontrolled Keywords: Computer Vision, Histopathology Images, Breast Cancer, Cervical Cancer, Gray Level Co-Occurrence Matrix, Learning Quantization Vector, Principal Component Analysis, Regression Analysis, Convolutional Neural Network, ResNet50V2, Pattern Recognition, Feature Selection
Subjects: 260 - Rumpun Ilmu Kedokteran > 270 - Ilmu Kedokteran Spesialis > 282 - Patologi Anatomi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Savina Zahro
Date Deposited: 27 May 2024 03:20
Last Modified: 27 May 2024 03:21
URI: https://sipora.polije.ac.id/id/eprint/32233

Actions (login required)

View Item View Item