Wulansari, Tanti (2024) Deteksi Ekspresi Wajah Untuk Mengukur Tingkat Kepuasan Pelanggan Dengan Menerapkan Metode Convolutional Neural Network. Undergraduate thesis, Politeknik Negeri Jember.
|
Text (Abstract)
Abstract.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (7kB) |
|
|
Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (85kB) |
|
|
Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (143kB) |
|
|
Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version Restricted to Registered users only Download (5MB) | Request a copy |
Abstract
The primary focus on enhancing customer satisfaction and service quality lies in the customer satisfaction system using Convolutional Neural Network (CNN). This method enables the real-time detection of customers facial expression to evaluate their satisfaction levels. Three types of datasets are utilized in this research to train various CNN models: primary, secondary, and mixed datasets. The results of multiple trials conducted reveal that the CNN From the Scratch 3 model, trained on a mixed dataset divided into an 80:20 ratio for training and testing data respectively, achieves an accuracy of 90,43% for training and 90,46% for testing. User Acceptance Testing (UAT) trials of the customer facial expression detection website demonstrated a success rate of 88%, indicating a relatively high level of acceptance among users for the customer expression detection website. The time required to detect customer facial expression is 30 seconds, as directly tested in the shop
| Item Type: | Thesis (Undergraduate) | ||||||
|---|---|---|---|---|---|---|---|
| Contributors: |
|
||||||
| Uncontrolled Keywords: | Convolutional Neural Network (CNN), Deep Learning, Customer Satisfaction, Facial Expression | ||||||
| Subjects: | 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 457 - Teknik Komputer 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi |
||||||
| Divisions: | Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir | ||||||
| Depositing User: | Tanti Wulansari | ||||||
| Date Deposited: | 15 May 2024 02:34 | ||||||
| Last Modified: | 15 May 2024 02:35 | ||||||
| URI: | https://sipora.polije.ac.id/id/eprint/31980 |
Actions (login required)
![]() |
View Item |
