Pengembangan Sistem Klasifikasi Kualitas Suhu Dan Kelembaban Pada Kumbung Untuk Budidaya Jamur Tiram (Pleurotus ostreatus) Menggunakan Metode Fuzzy Neural Network

Faizi, Yusril Fahmi Al (2021) Pengembangan Sistem Klasifikasi Kualitas Suhu Dan Kelembaban Pada Kumbung Untuk Budidaya Jamur Tiram (Pleurotus ostreatus) Menggunakan Metode Fuzzy Neural Network. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstrak)
7. ABSTRAK.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (14kB)
[img] Text (Bab 1 Pendahuluan)
14. BAB 1 PENDAHULUAN.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (74kB)
[img] Text (Daftar Pustaka)
19. DAFTAR PUSTAKA.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (136kB)
[img] Text (Laporan Lengkap)
E41171015_Yusril Fahmi Al Faizi_FullText.pdf - Submitted Version
Restricted to Registered users only

Download (8MB) | Request a copy

Abstract

White oyster mushroom (Pleurotus ostreatus) is one of the horticultural food ingredients that are in great demand and consumed by the people of Indonesia. Besides being effective and efficient, oyster mushrooms also contain many nutrients such as carbohydrates and proteins that are needed by the body. Oyster mushroom cultivation has a very high level of market demand and the amount of oyster mushroom production has not been able to meet market demand. This classification system aims to model the quality of temperature and humidity of oyster mushroom kumbung so that it can help farmers in the production process and fulfill market demand. This classification system uses the Neural Network method with Backpropagation algorithm and Fuzzy Logic. The final result of this research is the determination of air quality with input of temperature and humidity with good and bad air quality. The results of this study have a MAPE value of 0.57% with a system accuracy of 99.43% and the results of the groundtruth approach with experts resulting in an error rate of 3% and an accuracy rate of 97%.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorAgustianto, KhafidurrohmanNIDN0011129102
Uncontrolled Keywords: Classification, Oyster Mushroom, Neural Network, Bacpropagation, Fuzzy
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 463 - Teknik Perangkat Lunak
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Yusril Fahmi Al Faizi
Date Deposited: 30 Jul 2021 12:43
Last Modified: 30 Jul 2021 12:45
URI: https://sipora.polije.ac.id/id/eprint/5763

Actions (login required)

View Item View Item