Komparasi Feature Selectiontf-Idf Dan Chi Square Pada Klasifikasi Berita Online Di Indonesia Dengan Metode Multinomial Naïve Bayes

Labata, Ahira (2020) Komparasi Feature Selectiontf-Idf Dan Chi Square Pada Klasifikasi Berita Online Di Indonesia Dengan Metode Multinomial Naïve Bayes. Undergraduate thesis, POLITEKNIK NEGERI JEMBER.

[img] Text (ABSTRAK)
7. ABSTRAK.pdf - Accepted Version
Available under License Creative Commons Attribution Share Alike.

Download (52kB)
[img] Text (Bab1 pendahuluan)
13. BAB 1 PENDAHULUAN.pdf - Accepted Version
Available under License Creative Commons Attribution Share Alike.

Download (101kB)
[img] Text (Daftar Pustaka)
18. DAFTAR PUSTAKA.pdf - Accepted Version
Available under License Creative Commons Attribution Share Alike.

Download (93kB)
[img] Text (LAPORAN LENGKAP)
19. E41161549_LAPORAN LENGKAP.pdf
Restricted to Registered users only

Download (1MB)

Abstract

ABSTRACK As a result of the increasing of the internet use, nowadays, for accessing news, many people move to online media such as websites or news applications which are always updated at any time and can be accessed anytime and anywhere. With so many news uploaded on the internet, it is necessary to organize news by classifying them based on the discussion in the news. This research is to compare the online news classification system in Indonesia with Feature Selection TF-IDF and Chi Squareusing theMultinomial Naïve Bayes Method. The result is that the TF-IDF produces more accurate results with an accuracy of 90%. Keyword: news classification, multinomial naïve bayes, tf-idf, chi square, text mining

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorSetiyawan, EryNIDN8891500016
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 453 - Teknik Telekomunikasi
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Miswawan -
Date Deposited: 27 Oct 2020 07:21
Last Modified: 01 Sep 2023 03:57
URI: https://sipora.polije.ac.id/id/eprint/553

Actions (login required)

View Item View Item