Analisis Perbandingan Metode Alpha Miner, Inductive Miner dan Causal-Net Mining dalam Proses Mining

Hasyim, Rissa Aulia and Yaqin, Muhammad Ainul and Utomo, Adi Heru (2020) Analisis Perbandingan Metode Alpha Miner, Inductive Miner dan Causal-Net Mining dalam Proses Mining. Jurnal Teknologi Informasi dan Terapan, 7 (2). pp. 77-85. ISSN 2354-838X

[img] Text (Hasil Cek Similarity)
Analisis Perbandingan Metode Alpha Miner, Inductive Miner dan Causal-Net Mining dalam Proses Mining.pdf - Supplemental Material

Download (2MB)
[img] Text (Hasil Peer Review)
Analisis Perbandingan Metode Alpha Miner, Inductive Miner dan Causal-Net Mining dalam Proses Mining.pdf

Download (96kB)
Official URL: http://jtit.polije.ac.id/index.php/jtit/article/vi...

Abstract

Not all process mining algorithms can detect all model process scenarios, so experiments are carried out by trying 3 types of algorithms against 9 business process model scenarios in order to find the most suitable algorithm for each process model scenario. We use 3process algorithms mining including alpha miner, inductive miner and causal-net mining. We propose a solution using the ProM application to check the suitability of the 3 algorithms used against 9 scenarios. In addition, to support the results of the mining process using ProM, we measure the similarity value by comparing the process model on the dataset with the results of the mining process using ProM. Based on the similarity measurement, it is known that the experiment uses algorithm alpha miner. Figure 8 has the highest similarity level with a value of 0.89. While the smallest level of similarity is found in Figure 7 using alpha miner with a value of 0.12..

Item Type: Article
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Publikasi
Depositing User: Adi Heru Utomo
Date Deposited: 13 Sep 2021 02:08
Last Modified: 15 Jun 2023 10:38
URI: https://sipora.polije.ac.id/id/eprint/5251

Actions (login required)

View Item View Item