

Italian Journal of Animal Science

ISSN: 1828-051X (Online) Journal homepage: www.tandfonline.com/journals/tjas20

Dietary inclusion of golden apple snail egg powder as a natural astaxanthin source modulates MUC2 gene expression without affecting performance or organ weight in laying pullets

Suluh Nusantoro, Suyadi, Muhammad Halim Natsir, Frengky Hermawan Hadi Prasetyo & Osfar Sjofjan

To cite this article: Suluh Nusantoro, Suyadi, Muhammad Halim Natsir, Frengky Hermawan Hadi Prasetyo & Osfar Sjofjan (2025) Dietary inclusion of golden apple snail egg powder as a natural astaxanthin source modulates MUC2 gene expression without affecting performance or organ weight in laying pullets, Italian Journal of Animal Science, 24:1, 1934-1942, DOI: 10.1080/1828051X.2025.2554287

To link to this article: https://doi.org/10.1080/1828051X.2025.2554287

9	© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
	Published online: 03 Sep 2025.
	Submit your article to this journal 🗗
ılıl	Article views: 397
a a	View related articles 🗷
CrossMark	View Crossmark data 🗗

Taylor & Francis Taylor & Francis Group

RESEARCH ARTICLE

Dietary inclusion of golden apple snail egg powder as a natural astaxanthin source modulates MUC2 gene expression without affecting performance or organ weight in laving pullets

Suluh Nusantoro^{a,b}, Suyadi^a, Muhammad Halim Natsir^a, Frengky Hermawan Hadi Prasetyo^c and Osfar Sjofjana

^aFaculty of Animal Science, Universitas Brawijaya, Malang, Indonesia; ^bDepartment of Animal Sciences, Politeknik Negeri Jember, Jember, Indonesia; ^cDepartment of Agricultural Technology, Politeknik Negeri Jember, Jember, Indonesia

ABSTRACT

Golden apple snail eggs (GASE) is a potential natural source of astaxanthin, a carotenoid with notable antioxidant properties. However, the presence of antinutrients within GASE raises concerns regarding their effective utilisation in animal diets. This study evaluated the impact of dietary GASE on growth, internal organs (pancreas, liver), and genes for intestinal integrity (MUC2) and amino acid transport (SLC7A2, ASCT1) in laying chicken pullets. A total of one hundred and forty-four 12-week-old laying chicken pullets were assigned to a completely randomised design with 4 treatments and 6 replication. The treatments consisted of a basal diet based on broken rice (B), the basal diet supplemented with 20 g/kg GASE (L), the basal diet supplemented with 40 g/kg GASE (H), and a control diet based on maize without GASE (M). Following a 28-day experimental period, measurements of pullet growth performance, pancreas and liver weights, and jejunal histomorphometry revealed no significant differences among the dietary groups (p > 0.05). The dietary inclusion of GASE led to a suppression of MUC2 gene expression (p < 0.05). Conversely, the expression levels of the amino acid transporter genes, SLC7A2 and ASCT1, remained unaffected by the GASE supplementation (p > 0.05). These findings suggest GASE powder is a safe feed ingredient for laying chickens at the tested levels in this short-term study. Further research is needed to fully understand astaxanthin's potential protective effects on the intestine and other organs, as well as the long-term effects of dietary GASE.

HIGHLIGHT

- Dietary GASE suppressed the MUC2 gene expression in laying chicken pullet, but did not affect ASCT1 and SLC7A2 genes.
- Dietary addition of GASE up to 40 g/kg neither impair growth performance, pancreas, liver, nor jejunal morphometry of laying chicken pullet.
- GASE can be used as a natural astxanthin source for laying chicken.

ARTICLE HISTORY

Received 26 May 2025 Revised 20 August 2025 Accepted 25 August 2025

KEYWORDS

Golden apple snail eggs; natural; astaxanthin; laying chickens

Introduction

Pomacea canaliculata is a freshwater snail originating from South America that has become recognised as a globally significant invasive species, notably in Asian agricultural systems (Naylor 1996). Its polyphagous feeding habits encompass a broad spectrum of plant matter, and reproduction is characterised by the deposition of distinctive pink egg clutches above the waterline (Cowie 2002; Carlsson et al. 2004). The species' rapid reproductive capacity and voracious consumption, particularly of juvenile rice crops, have resulted in considerable agricultural losses and ecological disturbances within invaded habitats, solidifying its status as a major pest in numerous wetland ecosystems (Joshi 2007; Hayes et al. 2008; Constantine et al. 2023). Various strategies, including manual removal, chemical and biochemical treatments, and the introduction of natural predators, have been implemented to mitigate the detrimental effects of this snail in paddy fields (Panda et al. 2021; Azmi et al. 2022); however, the infestation demonstrates persistence.

Despite these negative attributes, the golden apple snail eggs (GASE) contain astaxanthin (AXE), a carotenoid molecule with the formula C₄₀H₅₂O₄, characterised by two hydroxyl and two carbonyl functional groups. Its extensive system of 13 conjugated double bonds results in its orange to deep-red pigmentation (Ambati et al. 2014). Due to its distinctive molecular structure, AXE exhibits strong antioxidant properties and offers health advantages such as reducing inflammation, improving skin, and enhancing eye health (Cao et al. 2023). Dreon et al. (2004) reported that GASE contains 72 nmol of carotenoids per gram, mainly astaxanthin in its free (40%), monoester (24%), and diester (35%) forms. The application of AXE has seen a recent surge, extending beyond its use as a feed additive in poultry and aquaculture to include foods, medicinal and cosmetic applications. Consequently, the exploration of novel sources, especially natural AXE, will become essential (Nishida et al. 2023).

Limited scientific literature indicates that the addition of 50 mg/kg dietary AXE extracted from fresh GASE enhanced the red skin colour of fancy carp to a level comparable with that of a synthetic source (Boonyapakdee et al. 2015). One report indicated that the incorporation of GASE powder (up to 15%) increased skin pigmentation as well as the antioxidant defence system (superoxide dismutase; SOD) in blood parrot fish (Yang et al. 2016). In Arab chickens, egg yolk colour (average yolk colour fan score) was significantly increased from 6.00 to 14.40, while total carotenoid content increased from 6.95 to 12.23 mg/g by including 12% of GASE powder in their diet (Nusantoro et al. 2020).

Alongside AXE content, GASE contains ovorubin, which is the major protein found in the perivitelline fluid of the eggs of Pomacea canaliculata (Dreon et al. 2003). This fluid also comprises carbohydrates, lipids, carotenoid pigments, and a proteinase inhibitor, contributing to the biochemical defences of snail eggs against predation inhibitor (Dreon et al. 2010). Oral administration of perivitelline fluid to mice led to significant morphological changes in the small intestinal epithelium (shorter, wider, and fused villi), which consequently diminished the absorptive surface area, particularly in the proximal region (Giglio et al. 2018). Toxicity tests in bullfrogs indicated that the intraperitoneal injection of 200 µl of 170 mg/Kg GASE extract (a dose 50 times higher than the LD₅₀) was not lethal. However, observations at 24 h revealed inflammation and structural alterations in the frog's small intestine which may alter bullfrog physiology, limiting their ability to absorb egg nutrients (Brola et al. 2020).

Ovorubin is classified as a Kunitz-type trypsin inhibitor. The presence of anti-nutritional agents, such as trypsin inhibitor, reduce the breakdown of proteins into amino acids, thus decreasing their availability for absorption. Pancreatic enlargement in chickens showed a linear increase in response to dietary trypsin inhibitor activity (TIA) after the TIA levels exceeded a threshold of 1.4 mg/g in the diet (Hoffmann et al. 2019). This morphological change represents a compensatory response aimed at increasing the production of digestive enzymes to counteract the inhibited trypsin activity (Kuenz et al. 2022). In addition, trypsin inhibitors affect the expression of several genes (MUC2, SLC7A2, and ASCT1) in chicken intestine, which can impair gut integrity and nutrients transport (Aderibigbe et al. 2020).

To our knowledge, there have been no previous reports that assess the effect of GASE on laying chickens' performance and gene expression. To explore the potential utilisation of GASE as a natural AXE source, we examined the effect of GASE on growth performance, internal organs and the expression of genes related to intestinal integrity and amino acid transport in laying chicken pullets.

Material and methods

Animal ethics

All the experimental procedures followed the standard regulations of animal welfare and ethics of Institut Biosains, Universitas Brawijaya (Approval certificate No: 049/KEP-UB/2024).

GASE preparation

The GASE were collected from the stems and leaves of rice plants, grasses, and the walls of agricultural irrigation channels in Jember, Indonesia. Debris and soil were removed before the GASE were dried in an oven at 60 °C. The GASE were then cooled to room temperature and subsequently powdered using a minigrinder. From 1000 g fresh, cleaned GASE, the process yielded 206.12-222.04 g of powder, representing a yield of 20.61-22.20%. The proximate analysis (in duplicate) of the GASE powder resulted in a dry matter content of 95.77%, crude protein 20.32%, ether extract 6.43%, and ash 59.59%. In addition, HPLC analysis (in duplicate) of the GASE powder determined an astaxanthin content of 26.62 ppm.

Pullets management, diets, and experimental design

One hundred and forty-four laying chicken pullets (ISA) Brown; 11 weeks old) were purchased from a local

Table 1. Ingredients and dietary composition of basal and maize based diets used in this experiment.

Ingredients (g/kg, as fed basis)	Basal diet	Maize based die
Rice, broken	500	_
Corn	_	500
Layer concentrate ^a	250	250
Rice bran	125	125
Wheat pollard	60	60
Dicalcium phosphate	20	20
CaCO3	30	30
Premix ^b	3	3
Salt	2	2
Lysin	9	9
Freetox ^c	1	1
Analysed composition (%)		
Dry matter	90.63	90.68
Crude protein	17.56	17.86
Crude fat	8.69	4.26
Crude fibre	6.11	6.82
Abu	15.81	17.98
Gross energy (MJ/kg)	15.44	16.02

^aThe layer concentrate contained a minimum of 35% crude protein. ^bThe premix povrived per kg diet: vitamin A 3600 IU, vitamin D 600 IU,

breeder. The poultry house was an open system with ventilation and equipped with fans. The room temperature was 25-30 °C and the relative humidity was approximately 60%. The lighting programme was 16 L:8D. The pullets were reared in individual galvanised battery cages (length: 60 cm, width: 40 cm, height: 50 cm), arranged in three tiers per stack. All pullets had free access to feed and drinking water.

The pullets were assigned to a completely randomised design, consisting of four treatment groups, each with six replicates and six pullets per replicate. The diet was formulated to meet or exceed the nutrient requirements of laying chickens from the National Standardisation Agency of Indonesia (BSN 2024). The basal diet was formulated based on broken rice, and a positive control of a pigmented diet was formulated based on maize, a common source of yellow pigment in laying chicken feeds (Table 1). Prior to the experimental treatments, all pullets were fed the basal diet for two weeks. Following this period, the treatment groups were provided with the following diets: B (basal diet, no GASE), L (basal diet + 20 g/kg GASE), H (basal diet + 40 g/kg GASE), and M (maize-based feed, no GASE). The GASE was in the form of powder. The total AXE content of diets B, L, H, and M was 0.82, 1.42, 1.95, and 2.64 ppm, respectively. No medication was administered, and there was no pullet mortality throughout the feeding trial.

Growth performance measurement

All pullets were individually weighed at the beginning (day 1) and end (day 28) of the experiment. Throughout the experimental period, no mortality occurred. Growth performance, in terms of average body weight gain (BWG) and average feed intake (FI), was recorded and calculated cumulatively. The feed conversion ratio (FCR) was determined by dividing the total feed intake by the total body weight gain.

Sampling procedures

At the end of the experiment, one pullet per replicate was randomly selected and weighed. The pullets were then slaughtered by cervical dislocation. The pancreas and liver were removed, rinsed with saline solution, and then weighed. The jejunum was removed, and a 1.5 cm segment was excised from the mid-jejunum for histological morphometry.

Pancreas, liver, and jejunal morphometry

Values for internal organs (pancreas and liver) are expressed as wet weight and organ indice as percentage of live body weight. Mid-jejunal segments were collected from one bird per replicate with median body weight, flushed with saline, and fixed in 10% neutral buffered formalin. Samples were subsequently dehydrated with ethanol and embedded in paraffin wax. Sections of 5 µm were stained with haematoxylin and eosin. Villus height and crypt depth were measured from four complete, vertically oriented villi per slide, and the villus height to crypt depth ratio was calculated. Histological sections were assessed using standard light microscopy. Intestinal villus lengths and areas were quantified via histomorphometric analysis using NIH ImageJ 1.53c software.

Gene expression

To examine gene expression, total RNA was isolated from the jejunum tissue using a Tissue Total Mini Kit (Geneaid, Taiwan), following their guidelines. The quality of the extracted RNA was checked using a spectrophotometer, and only high-quality samples (with an A₂₆₀/A₂₈₀ ratio of 1.8 or higher) were used to create cDNA with a Toyobo ReverTra Ace kit (Japan). The specific primer sequences used for amplification in this study are listed in Table 2. The amounts of messenger RNA for the genes were measured using a realtime PCR system from Toyobo (with SYBR Green) and a CFX384 instrument. The PCR setup involved denaturation, annealing, and extension temperatures of 95 °C

vitamin E 2.4 IU, vitamin K3 0.6 mg, vitamin B1 0.6 mg, vitamin B6 0.15 mg, vitamin B12 3.6 ug, vitamin C 7.5 mg, calciumD = panthotenate 1.8 mg, niacin 12 mg, cholin chlorde 3 mg, lysin 9 mg, methionine 9 mg, manganese 36 mg, iron 6 mg, iodine 0.06 mg, zinc 30 mg, cobalt 0.06 mg, copper 1.2 mg, santoquin 3 mg.

^cA mycotoxin binder contains hydrated sodium calcium aluminosilicate.

Table 2. Primer sequence of reference and gene of interest used in this study.

Gene	Primer sequence (5' – 3')	Product size (bp)	Gen ID	
Reference				
GAPDH	Forward: TCC TAG GAT ACA CAG AGG ACC A	151	NM_204305	
	Reverse: CGG TTG CTA TAT CCA AAC TCA			
Gene of interest				
MUC2	Forward: GCT ACA GGA TCT GCC TTT GC	152	XM_421035	
	Reverse: AAT GGG CCC TCT GAG TTT TT			
SLC7A2	Forward: TGC TCG CGT TCC CAA GA	67	NM_001199102.1	
	Reverse: GGC CCA CAG TTC ACC AAC AG			
ASCT1	Forward: TTG GCC GGG AAG GAG AAG	63	XM_001232899.4	
	Reverse:AGA CCA TAG TTG CCT CAT TGA ATG			

GAPDH: glyceraldehyde-3-phosphate dehydrogenase, MUC2: mucin 2, SLC7A2: solute carrier family 7 member 2, ASCT1: alanine serine cysteine threonine transporter 1.

Table 3. Effect of different addition level of golden apple snail eggs (GASE) and maize based feed on growth peformance traits of laying chicken pullets.

		Treat				
Parameters	В	L	Н	М	SEM	<i>p</i> -value
IBW (g)	1101.23	1112.58	1091.20	1097.68	8.673	0.867
FI (g/d)	83.59a	80.07a	83.64a	91.34b	1.079	< 0.001
FBW (g)	1613.98	1582.62	1579.82	1636.80	14.137	0.452
BWG (g/period)	512.75	480.03	488.62	539.12	6.437	0.503
FCR	5.75	6.30	6.06	5.98	0.180	0.781

 $[\]overline{a,b}$ Means in the same column within similar row followed by different letters are significantly different at p < 0.05. B: basal diet (formulated based of rice, without GASE powder). L: basal diet + 20 g/kg GASE powder. H: basal diet + 40 g/kg GASE powder. M: maized based feed without GASE powder. IBW: initial body weight. FI: feed intake. FBW: final body weight. BWG: body weight gain. FCR: feed conversion ratio.

for 10 s, 50 °C for 30 s, and 60 °C for 15 s, respectively. Subsequently, the samples were analysed in triplicate, and amplification was carried out for 40 cycles. The relative levels of MUC2, SLC7A2, and ASCT1 mRNAs, compared to a reference gene (GAPDH), were calculated using the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen 2001).

Statistical analysis

Following confirmation that the data met the assumptions of normality and homogeneity of variance, a one-way analysis of variance (ANOVA) was performed using SPSS 23. Where significant differences were identified among groups, Tukey's test was used for post-hoc comparisons. Results were considered significant at p < 0.05. The data are presented as the mean-± standard error of the means (SEM).

Results

Growth performance

The growth performance parameters of laying chicken pullets fed experimental feeds are presented in Table 3. Feed intake was significantly influenced by the dietary treatments (p < 0.01). The highest feed intake was observed in laying chicken pullets fed the maize-based diet (M), registering 91.34 g/day. The pullets fed diets B, L, and H (ranging from 80.07 to 83.64 g/day) statistically showed similar feed intake. Final body weight and body weight gain were not affected by the dietary treatments (p > 0.05). The average final body weight of the chickens ranged from 1579.82 to 1636.80 g, while the body weight gain ranged from 480.03 to 539.12 g. The B, L, H, and M pulltes displayed the same feed conversion ratio, ranging from 5.75 to 6.30 (p > 0.05).

Pancreas and liver weight

The weights of the pancreas and liver in laying pullets, as affected by the GASE treatments and the maizebased diet, are presented in Table 4. Pancreas weight ranged from 2.40 to 2.82 g (0.14-0.17%), while liver weight ranged from 29.26 to 38.41 g (1.75-2.29%). No significant differences among groups were observeed for pancreas and liver weights (p > 0.05).

Jejunal histomorphometry

Table 5 illustrates the effect of dietary GASE addition and maize feed on the jejunal histomorphometry. Villous height, crypt depth, and the ratio of villus height to crypt depth were not affected by the experimental diets (p > 0.05).

Gene expression

The effect of GASE and maize-based feed on the expression of the MUC2, SLC7A2, and ASCT1 genes is presented in Figure 1. The pullets fed maize basedfeed (M) showed the highest MUC2 gene expression (p < 0.05). The pullets fed B and L diets showed comparable MUC2 gene expression. However, the addition of 40 g/kg GASE powder (treatment H) downregulated

Table 4. Pancreas and liver weight of laying chicken pullets fed diets with different golden apple snail eggs (GASE) powder addition and maize based feed.

		Treatment				
Parameter	В	L	Н	М	SEM	<i>p</i> -value
Pancreas						
Weight (g)	2.40	2.52	2.77	2.82	0.078	0.170
Organ Indice (%)	0.14	0.15	0.16	0.17	0.004	0.146
Liver						
Weight (g)	30.55	31.85	38.41	29.26	1.299	0.076
Organ Indice (%)	1.82	1.90	2.29	1.75	0.018	0.078

B: basal diet (based on broken rice, without GASE powder). L: basal diet + 20 g/kg GASE powder. H: basal diet + 40 g/kg GASE powder. M: based on maize, without GASE powder.

Table 5. Jejunal morphometry of laying chicken pullets fed diets with different level of golden apple snail eggs (GASE) powder addition and maize based feed.

Treatment						
Parameter	В	L	Н	М	SEM	<i>p</i> -value
Villi height (µm)	1470	1200	1380	1280	45.594	0.425
Crypts depth (µm)	230	250	300	240	11.800	0.397
Villi to crypts ratio	6.60	5.16	4.81	5.36	0.290	0.073

B: basal diet (based on broken rice, without GASE powder). L: basal diet + 20 g/kg GASE powder. H: basal diet + 40 g/kg GASE powder. M: based on maize, without GASE powder.

MUC2 gene expression in laying chicken pullets. The expression of SLC7A2 and ASCT1 genes was not influenced by dietary treatment (p > 0.05).

Discussion

The diets utilised in this study were formulated to be isoenergetic and isonitrogenous. The principal difference between the diets was the basal feed ingredient; B, L, and H diets were based on broken rice, whereas M diet was based on maize. Consequently, the highest feed intake observed in chickens fed with M diet was attributed to the inclusion of maize. This observation aligns with the explanation by Klopfenstein et al. (2013), who noted that maize is a superior feedstuff for poultry, exhibiting greater palatability compared to other grains such as wheat and millet. A study replacing yellow maize with millet in broiler starters demonstrated higher consumption of maize (44.43 g/day vs. 41.70 g/day) compared to millet (Bulus et al. 2014). Similarly, Zhang et al. (2021) reported a decrease in feed intake of broiler when maize-based diets were replaced with rice, broken rice, and rice bran at equivalent energy and protein levels.

Daily ingestion of purified ovorubin (100 µl) from fresh P. canaliculata eggs decreased feed intake and growth in rats during the initial 3 days. However, this effect subsided after prolonged ovorubin feeding, potentially due to the animals' adaptation to the protease inhibitor (Dreon et al. 2010). Previous data indicates that when poultry are fed diets containing elevated concentrations of trypsin inhibitor, both their growth and feed intake are negatively affected (Evans et al. 2021; Kuenz et al. 2022) Interestingly, the feed intake of laying chicken pullets fed with a diet

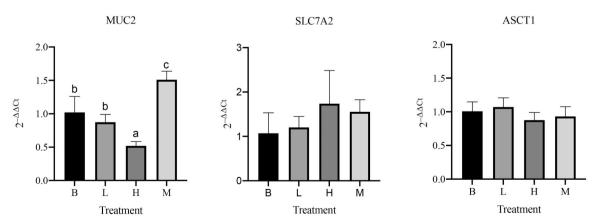


Figure 1. Jejunal gene expression of gut integrity (MUC2) and amino acid transporters (SLC7A2 and ASCT1) in laying chicken pullets fed diets with different golden apple snail eggs (GASE) powder additions and a maize-based feed. B: basal diet (based on broken rice, without GASE powder). L: basal diet + 20 g/kg GASE powder. H: basal diet + 40 g/kg GASE powder. M: maize-based feed without GASE powder. Values are means, and error bars indicate standard deviation. Letters above bars denote significant differences at p < 0.05.

supplemented with GASE was comparable to that of those on the basal diet. This suggests that the powdered form of GASE did not negatively impact the pullets' appetite.

The growth performance of the chickens in this study was comparable to the findings reported by Al-Harthi (2014). That study used brown marine algae (a pigment source rich in fucoxanthin) as a dietary supplement for laying pullets, which showed similar performance between 14 and 20 weeks of age. Supplementation with xanthophyll at doses of 20 and 40 mg/kg had no effect on the growth of laying hens aged 1-21 days (Gao et al. 2013). The addition of lutein, another carotenoid, to the feed also did not affect the growth of White Leghorn laying hens aged 12–30 days (Meriwether et al. 2010).

In contrast to these findings, the addition of 120 and 240 mg/kg of β -carotene was able to increase the growth of laying hens (Hy-Line) aged 1 to 21 days. Similarly, male Hy-Line chickens supplemented with β-carotene at a dose of 60 mg/kg showed higher body weight gain than chickens fed a control diet (Hui et al. 2020). Furthermore, the inclusion of β-carotene combined with several herbs (turmeric and ginger) increased the growth of chickens (1-21 days) compared to the control (Gong et al. 2020). These discrepancies suggest that the growth response of chickens to carotenoids is influenced by genetics, age, sex, and the specific carotenoid species itself.

One aspect examined in this study was whether GASE is safe for use in laying hens. To this end, this research assessed the weight of the pancreas, liver, and the morphometry of jejunum as indicators. As a response to the inhibition of the digestive process by antitrypsin, the size of the pancreas will increase (undergo hypertrophy) to enhance the secretion of digestive enzymes (Kuenz et al. 2022). Previously, morphological changes in intestine and liver tissue that impaired metabolism due to antinutrients were observed by Ortiz et al. (1994) and Emiola et al. (2007). In the present research, the data for pancreas and liver weight showed no significant difference. This suggests that the dietary inclusion of GASE powder at levels up to 40 g/kg did not induce any morphometric impairment in either of these organs in laying chicken pullets during this developmental period.

Paiva et al. (2014) elucidated that longer villi are indicative of a greater surface area and enhanced absorption capacity, and vice versa. Crypt depth can be associated with cell turnover, potentially as a response to epithelial cell damage, inflammation, and sloughing. A greater villus-to-crypt ratio is associated with improved intestinal function as it correlates with the balance between villus and crypt (Gilani et al. 2021). The reported ranges for villus length, crypt depth, and villus-to-crypt ratio in healthy and normal 40-week-old ISA Brown laying hens are 1.06-1.48 mm, 0.18-0.26 mm, and 5.10-5.51, respectively (Al Anas et al. 2024). During the grower phase, laying hens have a jejunal villus length of 0.93 mm, a crypt depth of 0.15 mm, and a ratio of 6.08 (Souza et al. 2014). Evaluation of the villus and crypt data and comparison with the previous literature indicates that the use of GASE in this experiment did not induce abnormalities in the jejunum of the laving hen pullets.

Another aspect examined in this researh was the gene expression. MUC2 gene serves as a nutrigenomic marker for gut integrity in chickens. Specifically, the expression levels of MUC2, which codes for a mucin protein, are associated with the health and function of the intestinal barrier (Ayalew et al. 2025). The dynamics of the MUC2 gene within the body are influenced by various factors, including the physiological condition of the body (due to disease or infection), age, and diet. Murai et al. (2018) observed that MUC2 gene expression in chicken jejunum was comparable among the groups of corn, polished rice, brown rice, and paddy rice.

The findings of this research indicate that chickens fed a maize-based diet exhibited higher MUC2 gene expression compared to those on broken rice-based diets. This observation aligns with existing literature suggesting a link between dietary fibre and MUC2 expression. Hao et al. (2022) have observed that dietary fibre intake upregulates MUC2 expression, promoting mucin secretion. Maize is known to typically possess a greater fibre content, originating from its outer layers, whereas broken rice generally contains less fibre. Therefore, the higher MUC2 expression in the maize group could be attributed to the greater fibre content of maize compared to broken rice.

The inclusion of this GASE (up to 40 g/kg) in the diet of laying pullets resulted in a suppression of MUC2 gene expression, consistent with the known action of trypsin inhibitors (Aderibigbe et al. 2020). Reduction in MUC2 expression could lead to a thinner mucus or less effective mucus layer, potentially increasing susceptibility to pathogenic cahllenges (Liu et al. 2020; Proszkowiec-Weglarz et al. 2020). However, downregulation of MUC in this experiment did not translate into the expected broader pathological changes. Specifically, the supplementation did not affect the structure of the intestinal villi and crypts of the birds. While the MUC2 gene, a gut integrity marker, was indeed downregulated, this did not manifest in growth performance detriments within the scope of this research. The inclusion of GASE in powdered form neither significantly impact the weight of the pancreas and liver, nor did it induce the expected impairment of the intestinal villi and crypt architecture. Furthermore, the expression of genes encoding amino acid transport (SLC7A2 and ASCT1) remained unchanged. Thus, processed GASE appears promise as a potentially safe feed component for laying pullets at the tested inclusion levels.

The apparent absence of widespread negative effects of GASE in this research could potentially be attributed to several factors. Dietary GAZE addition level was insufficient at the tested level to elicit significant negative effect of growth performance, internal organs, and some gene expression. Next to astaxanthin, GASE is a notable source of ovorubin (28.4 mg/g, Dreon et al. 2003), a Kunitz-type trypsin inhibitor, with concentrations comparable to those found in raw soya beans (around 27.9 mg/g trypsin inhibitor, Wedekind et al. 2020) with 19.7 mg/g activity (Han et al. 1991). It is established that trypsin inhibitor activity below 4.0 mg/g could not induce pancreatic hypertrophy and damage the intestinal architecture (Clarke and Wiseman 2007). As trypsin inhibitor is generally considered heat-labile (Avilés-Gaxiola et al. 2018), the 60 °C heating process in the preparation was likely effective in mitigating the anti-nutritional properties of GASE in this experiment. Additionally, the AXE present in the GASE powder possibly could have interacted with ovorubin, potentially modulating or buffering its effects on the pancreas and intestinal morphology due to its antioxidant and antiinflammatory properties. The duration of the experiment might also have been a contributing factor, being sufficient to influence gene expression but not long enough for macroscopic or microscopic tissue alterations to become apparent.

GASE inclusion increases the amount of dietary astaxanthin, a valuable antioxidant. However, as Dansou et al. (2021) observed, the potential benefits of this compound were diminished in laying hens fed a high dose (213.4 mg/kg) of astaxanthin. Additionally, the prolonged exposure to GASE's anti-nutritional agents may pose a significant risks of chronic health issues and organ damage, which requires further investigation.

Conclusion

In summary, this research has shown that incorporating golden apple snail egg (GASE) powder into the diet of laying chicken pullets (at levels up to 40 g/kg) did not negatively impact their growth performance, the weights of the pancreas and liver, or the structure of the jejunum. Although GASE supplementation resulted in reduced expression of the MUC2 gene, an indicator of gut integrity, the expression of amino acid transporter genes (SLC7A2 and ASCT1) were not altered. At the levels tested, GASE powder appears to be a safe dietary component for laying chicken pullets. Nevertheless, further investigation is needed to explore the potential protective effects of astaxanthin on the intestine and other organs, as well as the consequences of higher inclusion levels in diets and longer-term dietary exposure to GASE on these variables.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The authors gratefully acknowledge the financial support provided by the LPDP - Indonesia Endowment Fund for Education Agency, under the Ministry of Finance of the Republic of Indonesia.

Data availability statement

Data are available from the corresponding author upon reasonable request.

References

Aderibigbe A, Cowieson AJ, Sorbara JO, Pappenberger G, Adeola O. 2020. Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poult Sci. 99(10):5007-5017. doi: 10.1016/j.psj.2020.06.051.

Al Anas M, Aprianto MA, Akit H, Kurniawati A, Hanim C. 2024. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult Sci. 103(7):103777. doi: 10. 1016/j.psj.2024.103777.

Al-Harthi MA. 2014. Sexual maturity and performance of pullets fed different preparations and concentrations of brown marine algae (Sargassum Dentifebium) in prelaying and early laying periods. Ital J Anim Sci. 13(1):3102. doi: 10.4081/ijas.2014.3102.

Ambati R, Phang S-M, Ravi S, Aswathanarayana R. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—A review. Mar Drugs. 12(1):128-152. doi: 10.3390/md12010128.

Avilés-Gaxiola S, Chuck-Hernández C, Serna Saldívar SO. 2018. Inactivation methods of trypsin inhibitor in

- legumes: a review. J Food Sci. 83(1):17-29. doi: 10.1111/ 1750-3841.13985.
- Ayalew H, Xu C, Adane A, Sanchez ALB, Li S, Wang J, Wu S, Qiu K, Qi G, Zhang H. 2025. Ontogeny and function of the intestinal epithelial and innate immune cells during early development of chicks: to explore in ovo immunomodulatory nutrition. Poult Sci. 104(1):104607. doi: 10.1016/j.psj. 2024.104607.
- Azmi WA, Khoo SC, Ng LC, Baharuddin N, Aziz AA, Ma NL. 2022. The current trend in biological control approaches in the mitigation of golden apple snail Pomacea spp. Biol Control. 175:105060. doi: 10.1016/j.biocontrol.2022.105060.
- Boonyapakdee A, Pootangon Y, Laudadio V, Tufarelli V. 2015. Astaxanthin extraction from golden apple snail (Pomacea canaliculata) eggs to enhance colours in fancy carp (Cyprinus carpio). J Appl Anim Res. 43(3):291-294. doi: 10. 1080/09712119.2014.963102.
- Brola TR, Dreon MS, Fernández PE, Portiansky EL, Heras H. 2020. Ingestion of poisonous eggs from the invasive apple snail Pomacea canaliculata adversely affects bullfrog Lithobathes catesbeianus intestine morphophysiology. Malacologia. 63(2):171-182. doi: 10.1101/2020.07.07. 191684.
- [BSN] Badan Standardisasi Nasional. 2024. Pakan ayam ras petelur - Bagian 3: dara (layer grower). Jakarta: Badan Standardisasi Nasional, Indonesia.
- Bulus ED, Ibe EA, Yakubu ST, Samuel I, Makinde OJ. 2014. Performance of broiler chickens fed two varieties of guinea corn and millets as replacement for maize. Iran J Appl Anim Sci. 4(3):541-547. doi:.
- Cao Y, Yang L, Qiao X, Xue C, Xu J. 2023. Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr. 63(18):3019-3045. doi: 10.1080/ 10408398.2021.1983766.
- Carlsson NOL, Brönmark C, Hansson L-A. 2004. Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology. 85(6):1575-1580. doi: 10. 1890/03-3146.
- Clarke E, Wiseman J. 2007. Effects of extrusion conditions on trypsin inhibitor activity of full fat soybeans and subsequent effects on their nutritional value for young broilers. Br Poult Sci. 48(6):703-712. doi: 10.1080/0007166 0701684255.
- Constantine KL, Makale F, Mugambi I, Chacha D, Rware H, Muvea A, Kipngetich VK, Tambo J, Ogunmodede A, Djeddour D, et al. 2023. Assessment of the socio-economic impacts associated with the arrival of apple snail (Pomacea canaliculata) in Mwea irrigation scheme, Kenya. Pest Manag Sci. 79(11):4343-4356. doi: 10.1002/ps.7638.
- Cowie RH. 2002. Apple snails (Ampullariidae) as agricultural pests: their biology, impacts and management. In Barker GM, editor. Molluscs as crop pests. UK: CABI Publishing; p. 145-192.
- Dansou DM, Wang H, Nugroho RD, He W, Zhao Q, Zhang J. 2021. Assessment of response to moderate and high dose supplementation of astaxanthin in laying hens. Animals (Basel). 11(4):1138. doi: 10.3390/ani11041138.
- Dreon MS, Heras H, Pollero RJ. 2003. Metabolism of ovorubin, the major egg lipoprotein from the apple snail. Mol Cell Biochem. 243(1-2):9-14. doi: 10.1023/A:10216 16610241.

- Dreon MS, Ituarte S, Heras H. 2010. The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation. PLoS One. 5(12): e15059. doi: 10.1371/journal.pone.0015059.
- Dreon MS, Schinella G, Heras H, Pollero RJ. 2004. Antioxidant defense system in the apple snail eggs, the role of ovorubin. Arch Biochem Biophys. 422(1):1-8. doi: 10.1016/j.abb. 2003.11.018.
- Emiola IA, Ologhobo AD, Gous RM. 2007. Performance and histological responses of internal organs of broiler chickens fed raw, dehulled, and aqueous and dry-heated kidney bean meals. Poult Sci. 86(6):1234-1240. doi: 10.1093/ ps/86.6.1234.
- Evans CE, Garlich JD, Stark CR, Grimes JL. 2021. The effect of feed processing of novel unheated, low trypsin inhibitor soybeans on the performance of young female turkeys reared from hatch to 21 days of age. Poult Sci. 100(11): 101399. doi: 10.1016/j.psj.2021.101399.
- Gao Y-Y, Xie Q-M, Ma J-Y, Zhang X-B, Zhu J-M, Shu D-M, Sun B-L, Jin L, Bi Y-Z. 2013. Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. Br J Nutr. 109(6):977-983. doi: 10.1017/S0007114512002784.
- Giglio M, Garro C, Caviedes-Vidal E, Heras H. 2018. Egg perivitelline fluid of the invasive snail Pomacea canaliculata affects mice gastrointestinal function and morphology. PeerJ. 6:e5314. doi: 10.7717/peerj.5314.
- Gilani, Syed Muddassar Hussain, Rashid, Zubia, Galani, Saddia, Ilyas, Sahar, Sahar, Shagufta, Al-Ghanim, Khalid, Zehra, Sitwat, Azhar, Abid, Al-Misned, F, Ahmed, Z, et al. 2021. Growth performance, intestinal histomorphology, gut microflora and ghrelin gene expression analysis of broiler by supplementing natural growth promoters: a nutrigenomics approach. Saudi J Biol Sci. 28(6):3438-3447. doi: 10.1016/j.sjbs.2021.03.008.
- Gong HZ, Wu M, Lang WY, Yang M, Wang JH, Wang YQ, Zhang Y, Zheng X. 2020. Effects of laying breeder hens dietary β-carotene, curcumin, allicin, and sodium butyrate supplementation on the growth performance, immunity, and jejunum morphology of their offspring chicks. Poult Sci. 99(1):151-162. doi: 10.3382/ps/pez584.
- Han Y, Parsons CM, Hymowitz T. 1991. Nutritional evaluation of soybeans varying in trypsin inhibitor content. Poult Sci. 70(4):896-906. doi: 10.3382/ps.0700896.
- Hao Y, Ji Z, Shen Z, Xue Y, Zhang B, Yu D, Liu T, Luo D, Xing G, Tang J, et al. 2022. Increase dietary fiber intake ameliorates cecal morphology and drives cecal species-specific of short-chain fatty acids in white pekin ducks. Front Microbiol. 13:853797. doi: 10.3389/fmicb.2022.853797.
- Hayes KA, Joshi RC, Thiengo SC, Cowie RH. 2008. Out of South America: multiple origins of non-native apple snails in Asia. Divers Distrib. 14(4):701-712. doi: 10.1111/j.1472-4642.2008.00483.x.
- Hoffmann D, Thurner S, Ankerst D, Damme K, Windisch W, Brugger D. 2019. Chickens' growth performance and pancreas development exposed to soy cake varying in trypsin inhibitor activity, heat-degraded lysine concentration, and protein solubility in potassium hydroxide. Poult Sci. 98(6): 2489-2499. doi: 10.3382/ps/pey592.
- Hui J, Li L, Li R, Wu M, Yang Y, Wang J, Fan Y, Zheng X. 2020. Effects of supplementation with β -carotene on the growth performance and intestinal mucosal barriers

- in layer-type cockerels. Anim Sci J. 91(1):e13344. doi: 10.1111/asj.13344.
- Joshi RC. 2007. Problems with the management of the golden apple snail Pomacea canaliculata: an important exotic pest of rice in Asia. In: Vreysen MJB, Robinson AS, Hendrichs J, editors. Area-wide control insect pests. Dordrecht: Springer Netherlands; p. 257-264.
- Klopfenstein TJ, Erickson GE, Berger LL. 2013. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crop Res. 153:5-11. doi: 10.1016/j.fcr. 2012.11.006.
- Kuenz S, Thurner S, Hoffmann D, Kraft K, Wiltafsky-Martin M, Damme K, Windisch W, Brugger D. 2022. Effects of gradual differences in trypsin inhibitor activity on the estimation of digestible amino acids in soybean expellers for broiler chickens. Poult Sci. 101(4):101740. doi: 10.1016/j. psj.2022.101740.
- Liu K, Jia M, Wong EA. 2020. Delayed access to feed affects broiler small intestinal morphology and goblet cell ontogeny. Poult Sci. 99(11):5275-5285. doi: 10.1016/j.psj. 2020.07.040.
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2 - \Delta \Delta CT$ method. Methods. 25(4):402–408. doi: 10.1006/ meth.2001.1262.
- Meriwether LS, Humphrey BD, Peterson DG, Klasing KC, Koutsos EA. 2010. Lutein exposure, in ovo or in the diet, reduces parameters of inflammation in the liver and spleen laying-type chicks (Gallus gallus domesticus). J Anim Physiol Anim Nutr. 94(5):e115-e122. doi: 10.1111/j. 1439-0396.2010.00990.x.
- Murai A, Kitahara K, Terada H, Ueno A, Ohmori Y, Kobayashi M, Horio F. 2018. Ingestion of paddy rice increases intestinal mucin secretion and goblet cell number and prevents dextran sodium sulfate-induced intestinal barrier defect in chickens. Poult Sci. 97(10):3577-3586. doi: 10. 3382/ps/pey202.
- Naylor R. 1996. Invasions in agriculture: assessing the cost of the golden apple snail in Asia. Ambio. 25(7):443-448. doi:.
- Nishida Y, Berg P, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, et al. 2023. Astaxanthin: past, present, and future. Mar Drugs. 21(10): 514. doi: 10.3390/md21100514.
- Nusantoro S, Rouf A, Wulandari S, Nurkholis N, Kustiawan E, Awaludin A, Utami MMD. 2020. The use of Golden snail

- (Pomacea canaliculata) egg as source of carotenoid for improvement of Arabic chicken egg quality. IOP Conf Ser: Earth Environ Sci. 411:012038. doi: 10.1088/1755-1315/ 411/1/012038.
- Ortiz LT, Alzueta C, Treviño J, Castaño M. 1994. Effects of faba bean tannins on the growth and histological structure of the intestinal tract and liver of chicks and rats. Br Poult Sci. 35(5):743–754. doi: 10.1080/0007166940 8417739.
- Paiva D, Walk C, McElroy A. 2014. Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poult Sci. 93(11):2752-2762. doi: 10.3382/ps.2014-04148.
- Panda F, Pati SG, Bal A, Das K, Samanta L, Paital B. 2021. Control of invasive apple snails and their use as pollutant ecotoxic indicators: a review. Environ Chem Lett. 19(6): 4627-4653. doi: 10.1007/s10311-021-01305-9.
- Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. 2020. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci. 99(10):4714-4729. doi: 10.1016/j.psj.2020.06.023.
- Souza KD, Faria DD, Araújo R, Sakamoto M, Santos TD, Kikuchi CDG, Nakashima D, Caetano V. 2014. Performance and morphometry of the intestinal mucosa of laying hens fed diets containing xylanase. Rev Bras Cienc Avic. 16(3): 241-248. doi: 10.1590/1516-635x1603241-248.
- Wedekind KJ, Chen J, Yan F, Escobar J, Vazquez-Anon M. 2020. Efficacy of a mono-component protease is affected by trypsin inhibitor concentration in soybean meal. Anim Feed Sci Technol. 265:114502. doi: 10.1016/j.anifeedsci. 2020.114502.
- Yang SS, Liu Q, Wang YY, Zhao L, Wang YY, Yang SS, Du Z, Zhang J. 2016. Effects of dietary supplementation of golden apple snail (Pomacea canaliculata) egg on survival, pigmentation and antioxidant activity of Blood parrot. Springerplus. 5(1):1556. doi: 10.1186/s40064-016-3051-2.
- Zhang YC, Luo M, Fang XY, Zhang FQ, Cao MH. 2021. Energy value of rice, broken rice, and rice bran for broiler chickens by the regression method. Poult Sci. 100(4):100972. doi: 10.1016/j.psj.2020.12.069.