The Effect of Nitrogen and Potassium on the Plantlets Growth of Black Potato (Plectranthus rotundifolius) In Vitro Supervised by Rudi Wardana, S.Pd., M.Si. ## Eriza Febrianti Food Crop Production Technology Study Program Department of Agricultural Production ## **ABSTRACT** The success of black potato production is influenced by concentration NH₄NO₃ and KH₂PO₄. This study aims to examine the effect of various concentrations NH₄NO₃ and KH₂PO₄ on growth black potato planlets in vitro. The study was conducted at the Tissue Culture Laboratory of Jember State Polytechnic from September 2024 to January 2025 using a completely randomized factorial design with two factors: five levels of NH₄NO₃ (825–2475 mg/l) as a first factor, and two levels of KH₂PO₄ (85 mg/l and 170 mg/l) as a second factor, with 10 treatment combinations and 3 replications. The observed variables included plant height, number leaves, number nodes, internode length, root length, number roots, number shoots, and onset of shoot emergence. The results showed that the interaction between NH₄NO₃ and KH₂PO₄ had a significant effect on most parameters. The treatment of 1237.5 mg/l NH₄NO₃ + 170 mg/l KH₂PO₄ produced the highest plant height (7.67 cm) and the highest number of nodes (8.33). The treatment of 825 mg/l NH₄NO₃ + 170 mg/l KH₂PO₄ produced the longest root length (14.00 cm), the treatment of 2062.5 mg/l $NH_4NO_3 + 85$ mg/l KH_2PO_4 produced the highest number of leaves (16.67), the treatment of 1237.5 mg/l $NH_4NO_3 + 85$ mg/l KH_2PO_4 produced the highest number of roots (13.00), and $N5K2\ 2475\ mg/l\ NH_4NO_3+170\ mg/l\ KH_2PO_4$ produced the highest number of shoots (3.00). The application of NH₄NO₃ alone at a concentration of 1237.5 mg/l accelerated the emergence of shoots to 24.50 days, while concentrations that were too high reduced growth due to nitrogen toxicity. This study confirms that moderate doses of NH₄NO₃ combined with high doses of KH₂PO₄ provide optimal nutrient balance for the in vitro growth of black potato planlets. Keywords: black potato, in vitro, KH2PO4, NH4NO3, MS Medium