Penerapan Algoritma K- Nearest Neighbor (K-NN) Untuk Klasifikasi Penyakit ISPA Di Puskesmas Sukorambi Jember

Utsyaillah, Afita Taufiqoh (2025) Penerapan Algoritma K- Nearest Neighbor (K-NN) Untuk Klasifikasi Penyakit ISPA Di Puskesmas Sukorambi Jember. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (219kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (335kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (256kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (7MB) | Request a copy

Abstract

Acute Respiratory Tract Infection (ARI) is a respiratory tract infection caused by a virus or bacteria, which can attack organs ranging from the nose to the alveoli including adnexus tissues such as the pleura, middle ear cavity and sinuses. In the reporting of the top 10 outpatient diseases at the Sukorambi Health Center, it is known that ISPA disease ranks 1st with a total of 1,469 cases. This study aims to classify ISPA diseases using the K-Nearest Neighbor (K-NN) Algorithm at the USkorambi Jember Health Center. This type of research is quantitative which is processed using the RapidMiner tool with the K-NN Algorithm method. Sampling used a purposive sampling technique with a sample of 650 files with 10 variables consisting of cough, nasal congestion, sore throat, fever, shortness of breath, headache, hoarseness, runny nose, decreased appetite, and nausea/vomiting. The results showed that using K=7 the ratio of training data and data testing 60:40 had an accuracy value of 75.77%; Precision class acute pharyngitis 72.41%, acute upper respiratory infection unspecified 76.09%, pneumonia 100%; and recall class acute pharyngitis 43.75%, acute upper respiratory infection unspecified 97.77%, pneumonia 3.03%.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorYunus, MuhammadNIDN0831128607
Uncontrolled Keywords: Algoritma K-NN, Confusion Matrix, ISPA, Klasifikasi
Subjects: 340 - Rumpun Ilmu Kesehatan > 350 - Ilmu Kesehatan Umum > 353 - Kebijakan Kesehatan (dan Analis Kesehatan)
340 - Rumpun Ilmu Kesehatan > 350 - Ilmu Kesehatan Umum > Sistem Informasi Kesehatan
Divisions: Jurusan Kesehatan > Prodi D4 Manajemen Informasi Kesehatan > Tugas Akhir
Depositing User: Afita Taufiqoh Utsyaillah
Date Deposited: 12 Aug 2025 00:34
Last Modified: 12 Aug 2025 00:34
URI: https://sipora.polije.ac.id/id/eprint/45637

Actions (login required)

View Item View Item