Penerapan Metode Deep Learning dengan Model CNN untuk Mendukung Sistem Deteksi Penghitungan Benur Udang Vaname

Anggia Putri, Tri Farin Meydiantika (2025) Penerapan Metode Deep Learning dengan Model CNN untuk Mendukung Sistem Deteksi Penghitungan Benur Udang Vaname. Diploma thesis, Politeknik Negeri Jember.

[img] Text (Abstrak)
Abstrak.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (234kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1. Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (237kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (192kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf
Restricted to Registered users only

Download (5MB) | Request a copy

Abstract

Vaname shrimp farming is a strategic sector in Indonesian fisheries, but the manual counting process is often an obstacle in production efficiency and accuracy. This research aims to develop an automatic vaname shrimp fry detection and counting system using deep learning method with Convolutional Neural Network (CNN) model and YOLOv8 architecture. The dataset used was 757 augmented images from 300 original images, with the training process carried out on the Roboflow platform for 260 epochs. The training results showed good model performance with a mean average precision (mAP) value of 92%, precision of 89.8%, recall of 90.5%, and average loss of 1.3. Model testing resulted in an accuracy of 85.2% based on the confusion matrix. The model was able to efficiently detect and count vaname shrimp fry in less than five minutes, making it a potential solution in the automation of fry monitoring systems to support digital transformation in the aquaculture sector.

Item Type: Thesis (Diploma)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorFirmansyah, Muhammad HafidhNIDN0014029701
Uncontrolled Keywords: Vannamei Shrimp Farming, Deep Learning, Convolutional Neural Network (CNN), YOLOv8, Fry Counting.
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 457 - Teknik Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
Divisions: Jurusan Teknologi Informasi > Prodi D3 Teknik Komputer > Tugas Akhir
Depositing User: Tri Farin Meydiantika Anggia Putri
Date Deposited: 13 Jun 2025 03:29
Last Modified: 13 Jun 2025 03:29
URI: https://sipora.polije.ac.id/id/eprint/41824

Actions (login required)

View Item View Item