Analisis Sentimen Pengguna X Terhadap Kenaikan Suku Bunga Bank Indonesia Menggunakan Pendekatan Naïve Bayes Dan SVM

Widiyanto, Andru Christo (2025) Analisis Sentimen Pengguna X Terhadap Kenaikan Suku Bunga Bank Indonesia Menggunakan Pendekatan Naïve Bayes Dan SVM. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Abstrak)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (163kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (201kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (155kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (3MB) | Request a copy

Abstract

X is one of the most popular social media platforms in Indonesia, where people often express their opinions and views on various issues, including economic policies. The increase in interest rates by Bank Indonesia is one such policy that has garnered significant attention due to its impact on the economy. This study aims to analyze Twitter users' sentiment regarding the interest rate hike policy using the Naïve Bayes and Support Vector Machine (SVM) methods. The dataset used consists of 1,010 tweets, which are analyzed and classified into positive and negative sentiments. The results of the study show that the Naïve Bayes model achieved an accuracy of 69%, while the SVM model achieved a higher accuracy of 71%. Although both methods are effective, SVM slightly outperforms in analyzing the public's sentiment regarding Bank Indonesia's interest rate hike policy. This study provides a clearer understanding of public opinion and can be used to assist policymakers in designing more effective communication strategies regarding the interest rate policy.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorKurniasari, Arvita AgusNIDN0031089301
Uncontrolled Keywords: machine learning, python, sentiment
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Andru Christo Widiyanto
Date Deposited: 13 Jun 2025 08:03
Last Modified: 13 Jun 2025 08:03
URI: https://sipora.polije.ac.id/id/eprint/41778

Actions (login required)

View Item View Item