Performance Analysis and Effectiveness of Implementing PJU-CAM Solar Cell Based on ESP32-CAM to Enhance Community Mobility on the Argopuro Mountain Evacuation Route

Risse Entikaria Rachmanita, S.Pd., M.Si. (Thesis Supervisor)

Silvia Nur Anggita

Study Program of Mechatronic Engineering Technology Majoring in Engineering

ABSTRACT

Solar-powered street lighting systems serve as an alternative solution to overcome limited electricity access in remote areas. This study aims to analyze the performance and effectiveness of the PJU-CAM Solar Cell, based on ESP32-CAM, in improving residents' mobility along the evacuation route of Mount Argopuro. The system implementation includes the installation of solar panels, LiFePO4 batteries, PIR sensors for motion detection, and an ESP32-CAM as a monitoring camera. Testing results indicate that the PJU-CAM Solar Cell provides adequate illumination in accordance with rural road lighting standards. A survey conducted among local residents revealed that 90% of respondents reported increased safety and comfort when passing through the evacuation route at night. The system's effectiveness is also demonstrated by the stability of the ESP32-CAM connection and the efficiency of solar energy utilization. Therefore, the implementation of the PJU-CAM Solar Cell can serve as a sustainable solution for lighting in areas with limited electricity access.

Keywords: Solar Energy, ESP32-CAM, PJU-CAM Solar Cell