Penerapan Metode YOLOv5 dalam Prototipe Sistem Deteksi Kejahatan Perampokan pada CCTV

Aziz, Afris Nurfal (2024) Penerapan Metode YOLOv5 dalam Prototipe Sistem Deteksi Kejahatan Perampokan pada CCTV. Undergraduate thesis, Politeknik Negeri Jember.

[img] Text (Ringkasan/Abstract)
Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (14kB)
[img] Text (Bab 1 Pendahuluan)
Bab 1 Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (24kB)
[img] Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (65kB)
[img] Text (Laporan Lengkap)
Laporan Lengkap.pdf - Submitted Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

Crime is a serious problem in Indonesia, with escalating crime rates. Robbery, especially those involving violence and armed threats, poses a significant threat to public safety. To address this, CCTV technology has become a common solution. However, manual monitoring of CCTV recordings is highly inefficient and prone to human errors. Therefore, this research develops a prototype robbery detection system using the YOLOv5 method on CCTV. A dataset of images depicting robots performing robbery actions is prepared to train the detection model. Testing is conducted using this dataset, both in testing conditions with images and in real-time using a camera. The results show satisfactory success rates, with the ability to detect robberies reaching approximately 91% for violent robberies and 83% for armed robberies. Additionally, the system can send log data of detected criminal activities to a mobile application. For further development, plans include integrating real-time human object detection and adding alarm features to provide warnings when criminal activities are detected. These steps are expected to enhance the system's ability to monitor and respond to criminal situations more effectively.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsNIDN/NIDK
Thesis advisorAyuninghemi, RatihNIDN0702088601
Uncontrolled Keywords: YOLOv5, Robbery detection, CCTV, Prototype system, Real-time monitoring
Subjects: 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 457 - Teknik Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 459 - Ilmu Komputer
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 461 - Sistem Informasi
410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 462 - Teknologi Informasi
710 - Rumpun Ilmu Pendidikan > 780 - Ilmu Pendidikan Teknologi dan Kejuruan > 786 - Pendidikan Teknik Informatika
Divisions: Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir
Depositing User: Afris Nurfal Aziz
Date Deposited: 13 Jun 2024 08:43
Last Modified: 13 Jun 2024 08:43
URI: https://sipora.polije.ac.id/id/eprint/32622

Actions (login required)

View Item View Item