Effect of Rhizobium spp. and Various Doses of Azolla Compost on Sorghum (Sorghum bicolor L.) Plant Growth

Supervised by Tirto Wahyu Widodo, S.P., M.P.

Refi Andre Ani

Study Prog of Food Crop Production Technology Majoring of Agriculture Production

ABSTRACT

The demand for wheat flour in Indonesia continues to increase with wheat imports reached 3,707 tons. Efforts to reduce wheat imports can utilize sorghum as a substitute, however sorghum production has only increased by 1,581 tons in the past five years, necessitating to increase sorghum production can be done through use of *Rhizobium spp.* and azolla compost. This study aimed to examine effect of Rhizobium spp. from various rhizosphere with addition of various doses of azolla compost on sorghum. This study used a factorial complete randomized design (CRD) consisting of two factors and three replications. The first factor was treatment without *Rhizobium spp.* (control), *Rhizobium spp.* from rice rhizosphere, corn rhizosphere, edamame rhizosphere, soybean rhizosphere and peanut rhizosphere. The second factor was doses of azolla compost 35 g, 50 g and 65 g. Based on the results, Rhizobium spp. from corn rhizosphere with 35 g azolla compost had a significant effect on plant height (162.83 cm). Addition of organic matter can improve performance of bacteria because it can be source of carbon and energy. Application of Rhizobium spp. had a significant effect compared to the control on plant height (156.06 cm), stem diameter (2.61 cm) and leaf chlorophyll content (52.35). Rhizobium spp. can associate with non-legume plants through production hormone (IAA) and increase root absorption. Rhizobium spp. from nonlegume rhizosphere had a significant effect compared to Rhizobium spp. from legume rhizosphere on plant height (160.92 cm). This was thought because Rhizobium spp. from non-legume rhizosphere was more adaptable to sorghum rhizosphere. Rhizobium spp. can be an alternative method in increasing production of non-legume crops.

Key words: IAA hormone, Rhizobacteria, Organic Compost, Rhizosphere