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Abstract— Milkfish are the top five fish of aquaculture 
products in Indonesia with high sales in traditional markets.  
Hence, the Indonesian people should recognize the freshness of 
the fish in the traditional market. An automated system to 
recognize the freshness of milkfish based on the eye using 
Convolutional Neural Network (CNN) deep learning requires 
vast image data in training sessions. For our small dataset, we 
performed transfer learning with fine-tuning pre-trained 
CNNs. In this study, we evaluate several pre-trained CNN 
models to classify milkfish eye freshness. The dataset consists 
of 234 milkfish eye images and three freshness class. The 
experiments and analysis results show that NasNet Mobile and 
Densenet 121 outperform state-of-the-art with the best 
performance on training, validation, and testing data. 

Keywords— Convolutional Neural Network, milkfish eye, 
freshness, classification, transfer learning 

I. INTRODUCTION 

Indonesia is the highest fish producing country in 
Southeast Asia [1]. Data from the Ministry of Maritime 
Affairs and Fisheries in 2017 stated that the top five of 
Aquaculture Production by Major Commodities are Seaweed 
(69%), Nile Tilapia (7%), Shrimp (5%), Catfish (5%), and 
Milkfish (4%) from 16.11 million tons productions [2]. 
Simultaneously, milkfish is one of the product with high 
sales in traditional markets. Therefore, people should be able 
to recognize the freshness of the fish. Recognition of 
milkfish freshness for ordinary people is a difficult task 
without an automatic system. 

Some automatic fish freshness recognition system has 
been developed, for example, [3] and [4] created an 
automatic system for detecting fish freshness based on the 
eyes and the gills, [5] used color image processing for 
detecting Common Carp fish freshness. Research in [6] used 
deep learning to recognize fish freshness. A non-destructive, 
simple, rapid, and low-cost fish freshness recognition tool 
should become more popular with the popularity of deep 
learning, as conducted by [6]. [7] used deep learning to 
detect and count the number of fish in the marine 
environment with complex image variations, including 
lighting, fish camouflage, background changes, shape 
deformations due to swimming fish. Therefore, this research 
is significant for classifying fish freshness. Here we focus on 
milkfish as the famous fish among Indonesian people. 

Classification of fish freshness usually uses the image of 
body parts as a basis for classification, [3], and [8] using eyes 
and gills as a basis for recognition. In contrast, [4] and [9] 

uses only gills to classify fish freshness. The system 
developed by [3] uses the Red Green Blue (RGB), Hue 
Saturation Intensity (HSV), and L*a*b* color space as the 
main features while the artificial neural network (ANN) and 
support vector machine (SVM) as the classifier. The system 
achieves an accuracy performance of up to 97.33%. The 
color feature L*a*b* is also used by [8] to compare color 
difference features in the eyes and gills of fish with ice 
storage time. As a result, the system using the gills' color 
achieves better performance than the eyes, but the gills' 
recognition destroys the fish. Hence, non-destructive, simple, 
fast, and low-cost classification of fish freshness is 
appropriate when using eyes as a basis for recognition 
without touching or damaging fish. In [10], [11] uses only 
eyes to classify milkfish freshness with 18 color features of 
RGB, HSV, and L*a*b* color space, the system achieves 
accuracy to 69.94%. These studies use the image of the body 
part of the fish as the basis for the freshness classification but 
use a conventional method with specific steps. Therefore, we 
propose an innovation by examining the use of milkfish eye 
images to classify freshness using the Convolutional Neural 
Network (CNN). The images are being captured using a 
cellphone camera and then processed using CNN. We do not 
need other devices, such as transmitters and receivers, as 
additional wave features in the classification stage. Thus, our 
system is more straightforward, lighter, and faster. 

From our explanation above, it is essential to report how 
our experimental results classify milkfish freshness using 
CNN as an integrated system between feature extraction and 
classification. In this study, we evaluated the Convolutional 
Neural Network (CNN) in classifying milkfish freshness 
based on the eyes. Hence, it would be a non-destructive, 
simple, fast, and low-cost automatic fish freshness 
classification system. However, to achieve high-
performance, CNN requires vast image data for training the 
system classifying specific problems. For our small amount 
of image data, we use two strategies, data augmentation and 
transfer learning. Augmentation is a method for increasing 
data with various image modification variations: rotation, 
translation, scaling, shearing, zooming, and flipping. 

We conduct transfer learning with fine-tuning from pre-
trained CNN, for example, MobileNet [12], [13], ResNet 
[14], DenseNet [15], and NasNet [16]. The dataset used in 
this study is a milkfish eye dataset consisting of 234 images 
and three freshness classes (74 very fresh, 80 fresh, 80 not 
fresh). Milkfish samples are taken from traditional markets in 
Gresik City, East Java, Indonesia. Image acquisition is 
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carried out on milkfish with ice storage time from the first 
day to the sixth day. We evaluate CNN performance through 
the performance of training, validation, and testing accuracy.  
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Fig. 1. Framework of transfer learning with milkfish eyes dataset 

II. RESEARCH METHODOLOGY 

A. Research Framework 
We evaluate the performance of some CNNs by 

implementing transfer learning with fine-tuning, as presented 
in Fig. 1. We conducted a transfer learning from pre-trained 
CNN proposed by other research. Generally, pre-trained 
CNNs are trained using imagenet datasets consisting of 
millions of images and thousands of classes. The features 
and classifiers of pre-trained CNN are trained to recognize 
general classes, so we use these blocks features as 
knowledge transferred to our system. We use the features in 
the pre-trained CNN by conducting retraining some final 
layer.  

The framework we use is as follows: 

1. Transferred feature learning 

In this section, we investigated several pre-trained 
CNNs to be retrained with our dataset. We use only 
the feature blocks to solve our problems, while the 
classifier blocks are not used. Then, this block is 
retrained with fine-tuning to solve our problem. 

2. Classifier learning 

We do not use the classifier of pre-trained CNN; 
instead of creating our classifier with two fully 
connected layers, as explained below. 

3. Trained CNN for milkfish eye dataset 

As a result of the previous steps, we would gain 
CNN already trained on our dataset. Next, we 
compared the CNN in terms of training, validation, 
and testing sessions. 

We propose a framework for classifying milkfish eye 
freshness using CNN as presented in Fig. 2, consisting of the 
following parts: 

1. Feature learning 

This section is a block to train CNN features; when 
we apply transfer learning, we use weights from pre-

trained CNN. Also, to apply fine-tuning, we retrain 
the last ten layers of each pre-trained CNN 
experimented while the rest are not retrained (frozen). 
We compare some pre-trained CNN including 
MobileNet V1, MobileNet V2, ResNet50, ResNet101, 
Densenet121, Densenet 169, Xception, and Nasnet 
Mobile. 

2. Classifier learning 

In the classifier learning block, we use two fully 
connected layers, each consisting of 1024 neurons as 
hidden layers with ReLU activation and three neurons 
as the classifier with softmax activation. 

3. Trained CNN 

The result of the training is a CNN model with 
weights according to milkfish eye classification. We 
evaluate the performance of all CNNs that have been 
retrained to meet an appropriate CNN architecture for 
solving our case. 

B. Dataset 
The milkfish eye dataset consists of 234 images and three 

freshness classes (74 very fresh, 80 fresh, 80 not fresh). 
Image size varies from 260 × 260 to 290 × 290 pixels with 
type jpg. Milkfish samples are taken from traditional markets 
in Gresik City, East Java, Indonesia. Image acquisition is 
carried out on milkfish with ice storage time from the first 
day to the sixth day. The image samples of the dataset are 
presented in Fig. 3. We divide the dataset with a proportion 
of 60:20:20 for training, validation, and testing, respectively. 

C. Hyperparameters of CNN 
We made hyperparameter adjustments during the 

experiment as follows: the number of neurons in the first and 
second fully connected layers was 1024 and 6, respectively, 
dropout 0.5, optimizer RMSprop, learning rate 1e-5, loss 
function categorical cross-entropy, epoch 300 times, batch 
size of data training and testing 10 and 6, respectively, and 
step-per-epoch 14. 
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Fig. 2. Framework of milkfish eye freshness classification using CNN 

  
a. Very fresh b. Fresh c. Not fresh 

Fig. 3. Image samples of milkfish eye dataset 
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a. MobileNet V1 b. MobileNet V2 

  
c. ResNet50 d. ResNet101 

 
e. DenseNet 121 f. DenseNet 169 

  
g. Xception h. NasNet Mobile 

Fig. 4. The performance of CNN during training 

D. Data Augmentation 
We faced a limited number of images; nevertheless, CNN 

needed large amounts of data. So we conduct image 
augmentation to add variation to the training data. We use 

augmentation as follows, rotation, shifting, shearing, 
zooming, and flipping. 
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TABLE I.  THE BEST PERFORMANCE OF CNN AFTER 300 ITERATION 

CNN Training Validation Testing Best Epoch 
MobileNet V1 0.7286 0.7447 0.6382 146 

MobileNet V2 0.7786 0.6596 0.5531 299 

ResNet50 0.3571 0.4894 0.3617 82 

ResNet101 0.3286 0.5319 0.5745 5 

DenseNet 121 0.6714 0.7447 0.6595 120 

DenseNet 169 0.7357 0.7234 0.6382 226 

Xception 0.6857 0.6595 0.5532 83 

NasNet Mobile 0.7571 0.7234 0.6595 201 

 

III. RESULTS AND DISCUSSIONS 

We experimented with several pre-trained CNNs to 
complete the milkfish eye classification, including 
MobileNet V1, MobileNet V2, ResNet50, ResNet101, 
Densenet 121, Densenet 169, Xception, and Nasnet Mobile. 
Using settings including hyperparameters, fine-tuning, 
training, validation, and testing data, as explained earlier, the 
training process obtained is presented in Fig. 4. 

In general, there are three groups of training patterns as 
follows, overfitting, unrisen performance, and slowly rising 
performance. CNN with overfitting training are MobileNet 
V1 (Fig. 4 (a)), MobileNet V2 (Fig. 4 (b)), Densenet169 
(Figu. 4 (f)), and Xception (Fig. 4 (g)). MobileNet 
experienced overfitting from epoch 130, where the accuracy 
of the training continued rising, but the validation accuracy 
could not rise again. MobileNet V2 has overfitting since 
epoch 40, where validation accuracy grows up, but validation 
is getting further away from training accuracy. Densenet 169 
started overfitting since epoch 110, where the validation 
accuracy can no longer increase as training accuracy 
increases. Xception also has the same problem of overfitting 
since epoch 60. ResNet50 (Fig. 4 (c)) and ResNet101 (Fig. 4 
(d)) have a bigger problem where CNN is not able to study 
the dataset; this can be observed from the performance of 
accuracy can not be increased. Even up to 300 iterations, the 
up and down accuracy ranges from 0.2-0.6. Whereas 
DenseNet 121 (Fig. 4 (e)) and NasNet Mobile (Fig. 4 (f)) 
provide different performance, accuracy continues to 
increase slowly to more than 0.7. 

The results presented in Table 4 are the best performance 
achieved by all CNNs during 300 epochs. We recorded the 
best validation accuracy performance during the training 
session. The best epoch is an iteration where CNN achieves 
the best validation accuracy, while training accuracy is the 
accuracy of training data when validation achieves the best 
results. We use that model obtained for predicting testing 
data. Because testing data is data that CNN has never seen 
during a training session, we ensure that CNN is also robust 
at predicting new unseen data by examining the model using 
testing data. 

Almost all CNNs try to improve performance during a 
training session; only ResNet50 is almost unable to improve 
performance because of overfitting occurrence. MobileNet 
V2 achieved the best validation performance at the final 
epoch of 299, but the validation accuracy of 0.6596 was still 
below Densenet 121 as the highest accuracy of 0.7447. 
Densenet 121 and MobileNet V1 achieved the best validation 
accuracy at epoch 120 and 146, respectively. In terms of 
training accuracy, MobileNet V2 achieves the best accuracy 
of 0.7786, while NasNet Mobile is 0.7571. The best model 
for classifying testing data is NasNet Mobile and DenseNet 
121, where each achieves the same accuracy of 0.6595. 

The performance shown by DenseNet 121 and NasNet is 
better than others because both have the same principle 
where there are two parallel convolutions, which then merge 
in the next convolution layer. This mechanism provides the 
advantage that lower-level features can be generated in 
parallel and brought together at the next layer. Without using 
this method, some of the lower level features are not all 
captured to affect the classification performance. Although 
ResNet also has a residual concept in the form of lower-level 
features added to the next layer, the residues sent are also 
lower-level features that have also been convoluted by the 
next layer. The features generated by Resnet are weak; 
therefore, they are outperformed by DenseNet and NasNet. 
The same problem also occurs in both MobileNet and 
Xception. In the future, we also need to modify or rearrange 
the CNN architecture with minimal parameters and work 
optimally on our and other datasets, for example, by 
incorporating the advantages of DenseNet with ResNet in 
order to improve optimal performance. 

The experimental results show that DenseNet 121 and 
NasNet Mobile achieved the best performance among the 
state-of-the-art during the training stage. However, validation 
and testing accuracy cannot reach 0.8, at least have a 
performance improvement pattern along with training 
iteration. ResNet's results indicate that this architecture 
cannot study our dataset to classify milkfish's freshness. 

IV. CONCLUSION 

Our experiments show that NasNet Mobile and Densenet 
121 outperforms other CNNs for milkfish's eyes freshness 
classification. During training, both have performed well on 
training and validation and achieved the best validation and 
testing with accuracy 0.7447 and 0.6595. Meanwhile, other 
CNNs with low performance require further investigation to 
find out the problem. Then we can determine the appropriate 
treatment applied to CNN improves performance. For 
example, by applying the strengths of the DenseNet concept 
to ResNet architecture in order to achieve better 
performance. 
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