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A B S T R A C T   

Research on temperature gradient has been carried out in Blawan geothermal area. This study 
aims to predict the temperature in the subsurface temperature measurement using a temperature 
probe with a depth of 2 m in the Blawan geothermal area. Temperature and depth are the two 
variables being measured. Meanwhile, the resistivity, conductivity, and humidity data were taken 
from previous studies in the exact area measurements. The prediction determination used 
modeling with an Artificial Neural Network (ANN) with the back-propagation method. The 
optimal predictions using an Artificial Neural Network (ANN) were obtained by constructing 
three input layers, five hidden layers, and two output layers (3-5-2) with a hyperbolic tangent 
function. Results for temperature prediction with the larger R2 (1) values and lower MAPE 
(1.07%), RMSE (0.78), MSE (0.61), and MAD (0.34) values. Moreover, humidity generates a 
greater R2 (1) values and lower MAPE (0.34%), RMSE (0.34), MSE (0.18), and MAD (0.29) values. 
ANN proved very effective in predicting temperature and humidity factors.   

1. Introduction 

Geothermal Energy is one of the energies most countries have not utilized optimally [1]. Indonesia has 312 geothermal locations 
spread from Sumatra to Irian Jaya with a potential of 23.9 GW [2], and in 2013 increased by 24.02 GW [3]. Around 2130.7 MW of new 
geothermal power plants were installed in Indonesia in 2020, accounting for 8.9% of the country’s total installed capacity [4]. One of 
the geothermal prospect areas in Indonesia is Blawan geothermal field, located in Rengahrejo Hamlet, Kalianyar Village, Sempol 
Sub-district, Bondowoso Regency, with coordinates − 7.986528828, 114.174539662. The location has 21 hot springs that appear on 
the surface with temperatures ranging from 25 ◦C–50 ◦C [5] with an estimated potential of 10 MW [6]. Several stages of surveys are 
needed for geothermal energy utilization, including surveys of geothermal manifestations, geological and hydrological surveys, 
geochemical surveys, geophysical surveys, and the manufacture of exploration wells [7,8]. 

One of the geophysical methods for preliminary surveys is the thermal method. This method determines the temperature below the 
ground surface and detects anomalies in hot areas [8]. The thermal method measures the surface temperature to a depth of 1 m or a 
1-m temperature probe survey. In addition, several probe survey studies have been carried out, including research on temperature 
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gradient [9,10] and heat transfer [11]. 
Researchers have installed temperature sensors at a depth of 0.4 m in the Blawan Geothermal area to conduct temperature probe 

investigations on the earth’s surface to a depth of 2 m. Where the study’s findings can be used to estimate the geothermal reservoir’s 
temperature at a depth of 2000 m to be roughly 194 ◦C and its average heat flow to be 312.082 W/m2 [10]. However, this study has not 
explained the validity and optimization of the measurement results read by the temperature sensor at each depth. 

Artificial Neural Network (ANN) is one of the optimization methods that can predict and explain the nonlinear relationship be-
tween input and output to find patterns in the data [12], reduces linearity errors from sensor readings [13], and is more accessible than 
numerical methods [14]. The acceptable error limits of ANN results were obtained within 5% [15], and ANN was particularly effective 
in predicting the damage factor due to its high R2 and low RMSE and MEP values [16]. Pandey and Singh explained that Artificial 
Neural Network (ANN) is a solution that can be applied to complex geothermal systems to solve problems that are not done with 
analytical solutions [17]. In the use of the Artificial Neural Network (ANN) method, many are found in the fields of animal science [18, 
19], Medicine [20,21], pharmacology [22,23], and many more are found in other fields. However, it is rare to find the Artificial Neural 
Network (ANN) method used in geothermal. 

Due to these issues, it is crucial to forecast the temperature at the 2 m temperature probe survey using the Artificial Neural Network 
(ANN) method because this method is excellent for forecasting soil temperature [24,25]. This way, the obtained temperature value can 
be helpful for future research. 

2. Materials and methods 

2.1. Two meters temperature probe survey 

The study was conducted in Blawan hot water at a depth of 2 m with the help of a temperature sensor based on an Arduino mi-
crocontroller (Fig. 1). The temperature measurement is to determine the temperature value at each depth. The temperature sensor uses 
DS18B20, which is placed every 0.01-m depth up to 2 m. There are 21 sensors to detect the temperature below the ground surface 
(Fig. 2). Sending data is using wifi, and the data is stored on a MicroSD located in the toolbox, making it easier to retrieve data in steep 
areas. 

The recorded temperature data is taken from the average value at each depth. The resistivity, humidity, and conductivity data were 
obtained from a geoelectric and pH survey in the Blawan geothermal area. So the data used are temperature, humidity, depth, re-
sistivity, and conductivity, as in Table 1. 

2.2. Artificial Neural Network (ANN) 

In general, Artificial Neural Network (ANN) is formed by several neurons as an information processing unit serving as the basis for 
the operation of a function according to its task [26]. The fundamental element of the neural network is a neuron composed of neurons, 
weights inputs, a function of activation, a function of summation, and output [27,28]. Artificial Neural Network (ANN) includes a 
number of network topologies that are frequently utilized in their use in diverse applications, including Single-Layer nets made up of 
input units, one layer of weights, and output units, and Multi-Layer nets made up of input, hidden, and output. To determine the best 
architecture with the steps to find the best combination between input and the number of hidden. However, the Artificial Neural 
Network (ANN) modeling does not have a general procedure regarding the number of inputs, hidden layers, and nodes in each hidden 
layer. 

Several activation functions are used in ANN modeling, including threshold function, step activation function, sigmoid function, 
and hyperbolic tangent function [16]. In this paper, we use the hyperbolic tangent function using the equation [29]: 

∅(z) = z.g(z) (1)  

where g(z) is a hyperbolic tangent function and can be described by 

Fig. 1. Main master diagram.  
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g(z)= Tanh (z) =
expz − exp− z

expz + exp− z (2)  

where (z) is the input to the activation function, and exp is the exponential function. 
The value (weight) of the interaction between the neurons in the ANN determines the output, which takes the shape of a certain 

input pattern. The ANN will solve complex problems using appropriate values (weights) between neurons in different layers. Thus, one 
of the steps that must be taken is the training process [30]. The mechanism in supervised training is often called back-propagation (BP) 
(Fig. 3), and this application is widely used in the engineering field. The back-propagation algorithm was constructed in the ANN 
modeling to optimize the training model in the selection process [27]. 

The network training rules for backpropagation consist of two stages: feedforward and backward propagation. On the network is 

Fig. 2. Temperature measurement position.  

Table 1 
Data acquisition results.  

No Depth (m) Resistivity (Ω) Conductivity (Ω− 1) Temperature (oC) Humidity 

1 0 2 0.5 24.38 83,4 
2 0.1 3 0.3333 25.56 85,2 
3 0.2 4 0.25 25.63 85,3 
4 0.3 6 0.1667 25.69 85,6 
5 0.4 8 0.125 25.94 86,1 
6 0.5 10 0.1 31.06 87,6 
7 0.6 16 0.0625 34.94 88,2 
8 0.7 26 0.0385 35.06 88,7 
9 0.8 32 0.0313 35.13 88,9 
10 0.9 48 0.0208 35.19 88,9 
11 1 54 0.0185 32.69 88,1 
12 1.1 64 0.0156 36.00 89,2 
13 1.2 76 0.0131 36.06 89,2 
14 1.3 82 0.0121 36.13 89,4 
15 1.4 114 0.0088 35.94 89,6 
16 1.5 128 0.0078 35.25 89,3 
17 1.6 156 0.0064 35.94 89,8 
18 1.7 196 0.0051 36.19 91,2 
19 1.8 210 0.0048 36.25 91,4 
20 1.9 228 0.0044 36.35 91,6 
21 2 256 0.0039 36.50 91,6  
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given a set of training examples called training sets. This training set is represented by a feature vector called the associated input 
vector with an output that is the target of the training. In other words, the training set consists of an input vector and a target output 
vector. Exodus from the network is an actual output vector. Next, a comparison is made between the actual output produced and the 
target output by reducing the two outputs. The result of the reduction is an error. Errors are used to make changes to each weight by re- 
propagating it. Any weight changes that occur can reduce errors. Cycle weight changes (epochs) are carried out in each training set so 
that the 30 stop is reached. When the set number of epochs is reached or when a set threshold value is passed. The backpropagation 
network training algorithm consists of 3 stages that are [31]:  

1. The feedforward stage 

The input layer is first calculated by summing the weight and bias values up to the output layer using a predetermined activation 
function.  

2. The stage of feedback (backpropagation) 

Calculate the difference between network output with the desired target, which is then referred to as an error. Next is the back- 
propagation phase, the error factor is propagated backward, starting from the corresponding line directly with the units in the 
output layer.  

3. The stage of updating the weights and biases 

The last phase is modifying the weights to reduce errors that occurred. 
At the same time, the network architecture used in this study is a multi-layer net having three layers, namely input, hidden, and 

output (Fig. 4). By using the hyperbolic tangent function to find the optimum number of neurons in the training and testing data (R 
Square (R2), Root Average Squared Error (RASE), and Mean Absolute Deviation (MAD)). 

To calculate the percentage of error prediction results that have been obtained, using the prediction error percentage equation, then 
using equation (3) [30]. The prediction error percentage is the result of subtracting the predicted value from the actual value and 
dividing by the actual value, and the result is multiplied by 100%. 

Fig. 3. Backpropagation Algorithm Artificial Neural Network Architecture [32].  

Fig. 4. Schematic of the ANN diagram used.  

A. Afandi et al.                                                                                                                                                                                                         



Case Studies in Thermal Engineering 38 (2022) 102309

5

% error=
|predicted value − measured value|

measured value
x100 (3)  

2.3. Statistical accuracy measurement 

The accuracy of forecasting results is a measure of forecasting error indicating the degree of difference between the results of 
demand forecasting and the demand happened [33]. In all instances involving forecasting, there is a degree of uncertainty. The 
variation in the forecast is not only the element of the mistake but also the forecasting model’s incapacity to distinguish other data 
series elements. Consequently, the magnitude of the forecasting results variation can be due to unforeseen causes (outliers). The 
validation of forecasting methods cannot be separated from indicators in measuring forecasting accuracy. There are some indicators 
for measuring the accuracy of forecasting, but the most commonly used are Mean Absolute Percentage Error (MAPE), Root Mean 
Square Error (RMSE), Mean Square Error (MSE), and Mean Absolute Deviation (MAD). Forecasting accuracy will be high if the values 
of it are getting smaller. 

Meanwhile, to determine the accuracy and precision value in the optimization results, it is used statistical equations including:  

a) Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) is a relative determination model that determines the percentage value of deviations from 
the estimation results [34]. The equations used are like equation (4). 

MAPE=
1
N

∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

At

⃒
⃒
⃒
⃒ (4)  

where: At = Actual. 

Fig. 5. Flowchart of research.  
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Ft = Forecast  
b) Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is the square root of Mean Square Error (MSE) [35]. The equations used can be seen in equation 5 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(At − Ft)
2

n

√

(5)  

where: At = Actual. 

Ft = Forecast  
c) Mean Square Error (MSE) 

Mean Square Error (MSE) is the error value obtained from the average square of the subtraction between the actual value and the 
estimated value [36]. The equations used can be seen in equation (6). 

MSE=

∑n
t=1(At − Ft)

2

n
(6)  

where: At = Actual. 

Ft = Forecast  
d) The mean absolute deviation (MAD) 

The mean absolute deviation (MAD) is the sum of the absolute differences between the actual and estimated values divided by the 
number of observations or what is known as the mean absolute deviation [37]. The equations used can be seen in equation 7 

MAD=

∑n
t=1|At − Ft|

n
(7)  

where: At = Actual. 

Ft = Forecast 

As for the flowchart in this study, as shown in Fig. 5. 

3. Results and discussion 

Artificial Neural Network (ANN) is a method that is often used to predict temperatures in geothermal, the use of Artificial Neural 
Network (ANN) structures is needed to estimate output based on a good interpolation scheme [38]. The experimental parameters are 
listed in Table 1, and they are as follows: temperature, depth, resistivity, conductivity, and humidity. In this model, depth, resistivity, 
and conductivity serve as inputs, whereas temperature and humidity play the roles of outputs. 

Statistical data of the optimum number of neuron’s temperatures (Table 2) and statistical data of the optimum number of neuron’s 
humidity (Table 3), modeling is done by making a trial error to find the construction of the ANN diagram with the best validation value 
so that the structure of three input layers, five hidden layers, and two output layers is obtained (Fig. 4). The results of the resulting 
temperature prediction are as in Table 4, and humidity prediction is as in Table 5. 

A linear regression graph can be made between the actual temperature value and the predicted temperature based on Table 4 
(Fig. 6). The linear equation y = 0.9828x + 0.7463 is obtained, and the coefficient of determination (R2) is 0.9703. The coefficient 
value indicates that the ANN-based prediction value is extremely accurate and that there is a strong correlation between the actual 
temperature variable and the predicted temperature. 

The predicted value is obtained at the humidity output as in Table 5. The actual and predicted values are almost identical, as seen in 
Fig. 7. The linear equation obtained is y = 0.9069x + 8.3225 with a coefficient of determination (R2) of 0.9684. The value of the 
coefficient shows that the ANN prediction is very accurate and that the relationship between the actual temperature variable and the 

Table 2 
Statistical data of the optimum number of neuron’s temperature.  

Number of Neuron Learning rate Temperature 

Training Data Testing Dara 

R2 RASE MAD R2 RASE MAD 

3-3-2 0.1 0.89 1.42 0.82 0.89 1.55 1.01 
3-4-2 0.1 0.82 2.41 1.25 0.76 2.23 1.65 
3-5-2 0.1 0.99 0.19 0.11 0.91 1.31 0.85 
3-6-2 0.1 0.92 1.58 0.82 0.83 1.77 1.4 
3-7-1 0.1 0.8 2.23 1.33 0.72 2.36 1.82 
3-8-2 0.1 0.84 2.19 1.19 0.72 2.31 1.7  
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Table 3 
Statistical data of the optimum number of neuron’s humidity.  

Number of Neuron Learning rate Humidity 

Training Data Testing Dara 

R2 RASE MAD R2 RASE MAD 

3-3-2 0.1 0.97 0.36 0,3 0,94 0,39 0,25 
3-4-2 0.1 0.94 0.57 0.39 0.95 0.37 0.31 
3-5-2 0.1 0.98 0.29 0.23 0.94 0.39 0.23 
3-6-2 0.1 0.97 0.46 0.27 0.83 0.68 0.55 
3-7-2 0.1 0.94 0.52 0.37 0.95 0.45 0.28 
3-8-2 0.1 0.98 0.35 0.23 0.82 0.72 0.57  

Table 4 
Actual temperature value and predicted temperature.  

No Actual Temperature (oC) Predicted Temperature (oC) 

1 24.38 25.27 
2 25.56 25.57 
3 25.63 25.31 
4 25.69 25.66 
5 25.94 25.94 
6 31.06 31.06 
7 34.94 34.93 
8 35.06 34.92 
9 35.13 35.11 
10 35.19 35.83 
11 32.69 35.99 
12 36.00 36.08 
13 36.06 36.01 
14 36.13 35.90 
15 35.94 35.59 
16 35.25 35.68 
17 35.94 35.84 
18 36.19 35.87 
19 36.25 36.13 
20 36.35 36.42 
21 36.50 36.55  

Table 5 
Actual humidity value and predicted humidity.  

No Actual Humidity Predicted Humidity 

1 83.4 84.68 
2 85.2 85.05 
3 85.3 85.35 
4 85.6 85.73 
5 86.1 86.19 
6 87.6 87.36 
7 88.2 88.33 
8 88.7 88.84 
9 88.9 88.93 
10 88.9 89.12 
11 88.1 88.97 
12 89.2 89.09 
13 89.2 89.18 
14 89.4 89.32 
15 89.6 89.43 
16 89.3 89.77 
17 89.8 90.13 
18 91.2 90.52 
19 91.4 90.92n 
20 91.6 91.32 
21 91.6 91.88  
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predicted temperature is robust. 
Table 6 shows the percentage prediction error to determine the error percentage for each actual temperature and predicted 

temperature. The results were obtained in Table 6 with an average Percentage Prediction Error of 0.034% using equation (3). Fig. 8 
shows a linear regression graph with a value of y = 0.1x+2E-7 with a coefficient of determination (R2) of 1. In addition, Table 6 can 

Fig. 6. Regression of actual temperature and predicted temperature.  

Fig. 7. Regression of actual humidity and predicted humidity.  
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also explain the optimum results to describe the optimum between the actual temperature (31.06 ◦C) and the predicted temperature 
(31.06 ◦C) with a depth of 0.5 m, resistivity 10 Ω, and a conductivity value of 0.1 Ω-1. 

Table 7 shows the percentage prediction error to determine the error percentage for each actual humidity and predicted humidity. 
The results were obtained in Table 7 with an average Percentage Prediction Error of 0.03% using equation (3). Table 7 shows a linear 
regression graph with a value of y = 0.1x with a coefficient of determination (R2) of 1 (Fig. 9). In addition, Table 7 can also explain the 
optimum results to describe the optimum between the actual humidity (85.3) and the predicted humidity (85.35) with a depth of 0.2 
m, resistivity 4 Ω, and a conductivity value of 0.25 Ω-1. 

Calculating the mean absolute percent error (MAPE), mean square error (MSE), mean absolute deviation (MAD) [39], and root 
mean square error (RMSE) on the actual temperature value and the forecasted temperature value is required to compare the results 
above. The results of these calculations are as in Table 8. 

In Table 8, the Mean Absolute Percentage Error (MAPE) value of temperature and humidity is 1.07 and 0.34. These results can be 
interpreted that the temperature prediction is accurate because Caraka et al. explained that the MAPE value <4.9% is very accurate 
[40]. Meanwhile, for the Mean Square Error (MSE) and the Root Mean Square Error (RMSE), the values obtained are almost close to 
0 (0.61 and 0.78) for temperature and 0.18 and 0.34 for humidity, so it can be interpreted that these values are by the actual data. 
Meanwhile, for the mean absolute deviation (MAD), the result of 0.34 and 0.29 (Temperature and Humidity) can be interpreted as a 

Table 6 
Calculation results of Percentage Prediction Error of Temperature.  

No Actual Temperature (oC) Predicted Temperature (oC) Percentage Prediction Error (%) 

1 24.38 25.27 0.089 
2 25.56 25.57 0.001 
3 25.63 25.31 0.032 
4 25.69 25.66 0.003 
5 25.94 25.94 0.000 
6 31.06 31.06 0.000 
7 34.94 34.93 0.001 
8 35.06 34.92 0.014 
9 35.13 35.11 0.002 
10 35.19 35.83 0.064 
11 32.69 35.99 0.330 
12 36.00 36.08 0.008 
13 36.06 36.01 0.005 
14 36.13 35.90 0.023 
15 35.94 35.59 0.035 
16 35.25 35.68 0.043 
17 35.94 35.84 0.010 
18 36.19 35.87 0.032 
19 36.25 36.13 0.012 
20 36.35 36.42 0.007 
21 36.50 36.55 0.005 
Average 0.034  

Fig. 8. Regression percentage prediction error of temperature.  
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Table 7 
Calculation results of Percentage Prediction Error of Humidity.  

No Actual Humudity Predicted Humidity Percentage Prediction Error (%) 

1 83.4 84.68 0.128 
2 85.2 85.05 0.015 
3 85.3 85.35 0.005 
4 85.6 85.73 0.013 
5 86.1 86.19 0.009 
6 87.6 87.36 0.024 
7 88.2 88.33 0.013 
8 88.7 88.84 0.014 
9 88.9 88.93 0.003 
10 88.9 89.12 0.022 
11 88.1 88.97 0.087 
12 89.2 89.09 0.011 
13 89.2 89.18 0.002 
14 89.4 89.32 0.008 
15 89.6 89.43 0.017 
16 89.3 89.77 0.047 
17 89.8 90.13 0.033 
18 91.2 90.52 0.068 
19 91.4 90.92 0.048 
20 91.6 91.32 0.028 
21 91.6 91.88 0.028 
Average 0.03  

Fig. 9. Regression percentage prediction error of humidity.  

Table 8 
The results of calculating the level of accuracy.  

Stats Items The calculation results 

Temperature Humidity 

MAPE 1.07 0.34 
MSE 0.61 0.18 
MAD 0.34 0.29 
RMSE 0.78 0.34  
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value that has minimal error and a good level of accuracy. 

4. Conclusion 

The ANN model with the back-propagation method can be applied in predicting the temperature of the subsurface temperature 
measurement using a temperature probe with a depth of 2 m in the geothermal Blawan area, shown through the validation results. The 
parameters were used to give perfect results.  

1. The performance of the ANN model shows that the multi-layer net model with the 3-5-2 architecture gives the most optimum with a 
hyperbolic tangent function, and the learning rate is 0.1. The value of R2 on the training data is 0.99, and the testing data is 0.91. 
The RASE on the training data is 0.19, and the testing data is 1.31. Training data on MAD is 0.11, and testing data is 0.85 (tem-
perature). The value of R2 on the training data is 0.98, and the testing data is 0.94. The RASE on the training data is 0.29, and the 
testing data is 0.39. Training data on MAD is 0.23, and testing data is 0.23 (humidity).  

2. The actual temperature and the temperature predicted value are obtained by the linear regression equation y = 0.9828x + 0.7463 
with a coefficient of determination (R2) of 0.9703. While the regression equation on the percentage prediction error gets the 
equation y = 0.1x+2E-7 with an average error value of 0.034% and a coefficient of determination (R2) of 1. The actual humidity 
and the humidity predicted value are obtained by the linear regression equation y = 0.9069x + 8.3225 with a coefficient of 
determination (R2) of 0.9684. While the regression equation on the percentage prediction error gets the equation y = 0.1x with an 
average error value of 0.03% and a coefficient of determination (R2) of 1. From these coefficient values, it can be interpreted that 
the prediction value using ANN is very accurate, and the relationship between the actual temperature variable and the predicted 
temperature is very strong.  

3. The statistical test process to obtain accuracy and precision from the optimization results using MAPE, MSE, MAD, and RMSE 
obtained values of 1.07%, 0.61, 0.34, and 0.78 (temperature), and 0.34%, 0.18, 0.29, and 0.34 (Humidity). The conclusion has very 
small errors and good levels of accuracy and precision. 
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[27] A. Eser, E. Aşkar Ayyıldız, M. Ayyıldız, and F. Kara, “Artificial intelligence-based surface roughness estimation modelling for milling of AA6061 alloy,” Adv. 

Mater. Sci. Eng., vol. 2021, 2021. 
[28] F. Kara, M. Karabatak, M. Ayyıldız, E. Nas, Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel 

with ceramic cutting, J. Mater. Res. Technol. 9 (1) (2020) 969–983. 
[29] S.K. Roy, S. Manna, S.R. Dubey, B.B. Chaudhuri, LiSHT: Non-parametric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks, 2019 

arXiv Prepr. arXiv1901.05894. 
[30] W. Guang, M. Baraldo, M. Furlanut, Calculating percentage prediction error: a user’s note, Pharmacol. Res. 32 (4) (1995) 241–248. 
[31] A. Cripps, Using artificial neural nets to predict academic performance, in: Proceedings of the 1996 ACM Symposium on Applied Computing, 1996, pp. 33–37. 
[32] A. Goel, ANN-based approach for predicting rating curve of an Indian River, Int. Sch. Res. Notices (2011) 2011. 
[33] J.W. Taylor, L.M. De Menezes, P.E. McSharry, A comparison of univariate methods for forecasting electricity demand up to a day ahead, Int. J. Forecast. 22 (1) 

(2006) 1–16. 
[34] S. Kim, H. Kim, A new metric of absolute percentage error for intermittent demand forecasts, Int. J. Forecast. 32 (3) (2016) 669–679. 
[35] H. Pham, A new criterion for model selection, Mathematics 7 (2019) 1–12. 
[36] M.T. Hagan, H.B. Demuth, M. Beale, Neural Network Design, PWS Publishing Co., 1997. 
[37] H. Konno, H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manag. Sci. 37 (5) (1991) 519–531. 
[38] V. V Spichak, Estimating temperature distributions in geothermal areas using a neuronet approach, Geothermics 35 (2) (2006) 181–197. 
[39] M. Mehri, M. Ghazaghi, A hybrid model of uniform design and artificial neural network for the optimization of dietary metabolizable energy, digestible lysine, 

and methionine in quail chicks, Brazilian J. Poult. Sci. 16 (3) (2014) 313–318. 
[40] R.E. Caraka, S.A. Bakar, M. Tahmid, H. Yasin, I.D. Kurniawan, Neurocomputing fundamental climate analysis, Telkomnika 17 (4) (2019) 1818–1827. 

A. Afandi et al.                                                                                                                                                                                                         

http://refhub.elsevier.com/S2214-157X(22)00552-4/sref12
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref12
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref13
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref14
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref14
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref15
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref15
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref16
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref16
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref17
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref17
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref18
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref19
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref19
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref20
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref21
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref21
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref22
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref22
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref23
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref23
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref24
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref24
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref25
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref25
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref26
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref28
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref28
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref29
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref29
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref30
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref31
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref32
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref33
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref33
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref34
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref35
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref36
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref37
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref38
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref39
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref39
http://refhub.elsevier.com/S2214-157X(22)00552-4/sref40

	Prediction of temperature in 2 meters temperature probe survey in Blawan geothermal field using artificial neural network ( ...
	1 Introduction
	2 Materials and methods
	2.1 Two meters temperature probe survey
	2.2 Artificial Neural Network (ANN)
	2.3 Statistical accuracy measurement

	3 Results and discussion
	4 Conclusion
	Authorship contributions
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


