# Fatigue Detection of XYZ Drivers based on Human Brain Wave EEG Signals

by I Gede Wiryawan

Submission date: 15-Feb-2023 12:58PM (UTC+0700)

**Submission ID:** 2014638985

File name: 299-Article\_Text-1489-1-10-20221229.pdf (533.61K)

Word count: 3288
Character count: 17094

# Fatigue Detection of XYZ Driver based on Human Brain Wave EEG Signals

Shabrina Choirunnisa Computer Engineering Politeknik Negeri Jember Jember shabrinacnisa@polije.ac.id

I Gede Wiryawan Computer Engineering Politeknik Negeri Jember Jember wiryawan @polije.ac.id Beni Widiawan Computer Engineering Politeknik Negeri Jember Jember beni@polije.ac.id

Bekti Maryuni Susanto Computer Engineering Politeknik Negeri Jember Jember bekti@polije.ac.id Yogiswara
Computer Engineering
Politeknik Negeri Jember
Jember
yogipoltek@gmail.com

Agus Purwadi Computer Engineering Politeknik Negeri Jember Jember agus\_purwadi@polije.ac.id

Abstract— The cause of death due to traffic accidents is now increasingly common. One of the main factors causing this accident is driver fatigue. This can happen because the driver is not aware of his tired mental condition. Of course, mental fatigue can cause a lack of concentration while driving. Analyzing the brain waves through the EEG signal from the driver can be one of solution to detect the mental fatigue. This brain wave analysis can be done by various methods. In this study, the authors conducted a brain wave-based detection of mental fatigue using the Fourier transform and Support Vector Machine. The EEG signal data will be feature extracted using the Fourier Transform. Then, the results of this extraction will be used for the classification process with the Support Vector Machine method. Based on the experimental results, the average accuracy of mental fatigue obtained 85%.

Keywords— Early detection of fatigue, EEG signals, Fourier Transform, SVM.

Abstrak— Penyebab kematian akibat kecelakaan lalu lintas kini semakin marak terjadi. Salah satu faktor utama penyebab kecelakaan ini adalah kelelahan pengemudi. Saat mengalami kelelahan, konsentrasi pengemudi menurun dan saat konsentrasi menurun, resiko kecelakaan lalu lintas akan semakin tinggi. Untuk mengantisipasi hal tersebut, diperlukan suatu sistem pendeteksi dini kelelahan pada pengemudi saaat berkendara dengan menganalisis gelombang otak melalui sinyal EEG. Pertama, sinyal EEG akan ditransformasi dalam bentuk fourier lalu dilakukan beberapa tahapan praproses untuk memperoleh sinyal EEG yang lebih bersih. Setelah itu, sinyal EEG akan diklasifikasi menggunakan metode klasifikasi Support Vector Machine untuk mengetahui apakah pengemudi tersebut terindikasi mengalami kelelahan atau tidak. Berdasarkan hasil percobaan, diperoleh rata-rata akurasi 85%.

Keywords— Deteksi dini kelelahan, Sinyal EEG, Transformasi Fourier, SVM

# INTRODUCTION

Today, the cause of death due to traffic accidents is very common. One of the main factors causing accidents is fatigue while driving a vehicle [1]. This can occur due to the driver's lack of awareness when they feel tired. Of course mental fatigue can cause a lack of concentration while driving.

The brain waves analysis through the EEG signal from the driver is used due to early detection of fatigue while driving.

Brainwave analysis can be performed using a variety of methods. Abd. Rahman, et al proposed a real time eye blink removal using Adaptive Filtering [2], while Chai, R, et al approached classification of mental fatigue using principal componant analysis [3]. SVM and LDA are also proposed by Muhammad Afif Hendrawan to obtain the fatigue mental detection [4].

In this study, the authors conducted a brain wave-based detection of mental fatigue using the Fourier transform and a support vector machine. The features of the EEG signal data will be extracted using the Fourier Transform. Then, the extraction results will be used as input at the classification stage using the Support Vector Machine method. This research is expected to show the condition of the driver, whether the driver is tired or not. In addition, it will also be concluded what method is appropriate for conducting brain wave analysis to determine the mental state of the driver.

# RESEARCH METHOD

In this study a system will be built to detect the mental fatigue based on EEG. First of all, the brain wave data is recorded first then the preprocessing and classification stages are carried out. The data capture stage is the first stage of this system where the recording of brain waves is done using the NeuroSky MindWave device. Furthermore, the preprocessing stage is carried out by noise in the missing signal and extracting the features of the wave so that the data to be classified can be classified optimally. The final stage is classification, to find out whether the driver is mentally exhausted or not. The overall system flow diagram is represented in Figure 1.

# A. Hardware

The device used to record brain waves in this study is NeuroSky MindWave. The process of recording brain waves is carried out in the morning and at night in order to show significant differences in brain waves. NeuroSky MindWave has specifications as shown in Table 1 below.

# Jurnal Teknologi Informasi dan Terapan (J-TIT) Vol. 9 No. 2 Desember 2020 ISSN: 2580-2291

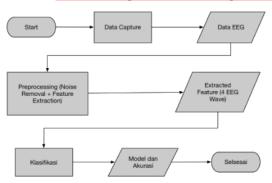



Figure 1. System Flowchart

TABEL I. SKY MINDWAVE SPECIFICATION

NNEURO

| Specification        | Information |
|----------------------|-------------|
| Sensor               | Passive     |
| Number of electrodes | 2           |
| Type of electrodes   | Dry         |
| Sampling Rate        | 512Hz       |
| Other Specification  | Wireless    |

The electrodes contained in NeuroSky MindWave consist of a receiver electrode and a grounding electrode. The form of NeuroSky MindWave is shown in Figure 2. This receiver electrode will come into contact with the scalp where its function is to receive signal waves from the brain. Because the nature of this electrode is a dry electrode, it does not need to be used with a saline solution. The grounding electrode is shaped like a clamp which will later be placed on the earlobe which functions as a reference for the baseline voltage of the human body. This electrode is very important so that the EEG is not disturbed by other electrical activity in the body.



Figure 2. NeuroSky MindWave

# B. Fatigue Dataset

The mental fatigue dataset is obtained by recording an individual which is done repeatedly to avoid inconsistent results when done on different individuals. [5]. The subject recorded was a 21-year-old student who had lecture activities from noon to evening. The individual went to campus from home with a distance of about 21 km by motorbike for 45 minutes with busy protocol routes, especially in the

afternoon. The subject's activity is continued by studying at night until entering bedtime. The results of the recording using this tool will be in the form of brain waves in the time domain with a sampling of 512Hz. The recording was carried out for a few minutes and then the waves were cut with a duration of 10 seconds each for 40 data with 20 data for each class. Cutting the wave is done by making visual observations and selecting the part of the wave to be used.

# C. Electroencephalography (EEG)

The cortex layer of the brain consists of neurons that are connected to each other to form a network and receive input from other parts of the brain. Electrical activity in the form of nerve stimulation sent or received by cortical neurons always occurs even during sleep. Biologically, medically, and legally, the absence of activity indicates death.

The electrical activity to be measured reflects the intrinsic activity of the neurons in the cerebral cortex and the information transmitted from subcortical structures and nerve receptors. This whole activity is called the Electroencephalogram (EEG). An EEG electrode will only record activity from the area of the brain attached underneath. Even so, the electrodes receive activity from thousands of neurons. In fact, 1mm of cortex contains more than 100,000 neurons. If the input of a synchronized region with electrical activity occurs at the same time, it shows a simple periodic wave of EEG. The four simple rhythmic periods recorded in the EEG are alpha, beta, delta, theta waves [6]. These simple rhythmic period waves have different frequencies. These frequencies are shown in Table 2 [7].

TABEL II. FREOUENCY

EEEG

| Ritme | Frequency  |
|-------|------------|
| Delta | 0.5 – 4 Hz |
| Theta | 4 – 8 Hz   |
| Alpha | 8 – 13 Hz  |
| Beta  | 13 – 20 Hz |
|       |            |

# D. Preprocessing

The cortex layer of the brain consists of neurons that are connected to each other to form a network and receive input from other parts of the brain. Electrical activity in the form of nerve stimulation sent or received by cortical neurons always occurs even during sleep. Biologically, medically, and legally, the absence of activity indicates death.

The electrical activity to be measured reflects the intrinsic activity of the neurons in the cerebral cortex and the information transmitted from subcortical structures and nerve receptors. This whole activity is called the Electroencephalogram (EEG). An EEG electrode will only record activity from the area of the brain attached underneath. Even so, the electrodes receive activity from thousands of neurons. In fact, 1 mm of cortex contains more than 100,000 neurons. If the input of a synchronized region with electrical activity occurs at the same time, it shows a simple periodic wave of EEG. The four simple rhythmic periods recorded in the EEG are alpha, beta, delta, theta waves [8]. These simple

rhythmic period waves have different frequencies. These frequencies are shown in Table 2 [9].

## E. Feature Extraction

The next process aims to get the features of the signal. The features of brain waves consist of 4 wave forms namely alpha, beta, delta, and theta waves. The four waves have their respective frequencies which are described in Table 2. To carry out this stage, the signal magnitude is first removed and the power spectrum calculation of each wave is performed. This aims to change the wave in the form of a complex double to a double to make it easier to carry out power spectrum calculation operations.

One type of fourier transform is the Fast Fourier Transform (FFT). FFT is applied in a wide variety of fields from digital signal processing and solving partial differential equations to algorithms for multiplying large numbers of integers. The advantage of the Fast Fourier Transform is that the frequency content does not change easily with changes in time. This is very supportive of our data structure because the EEG frequency signal data is taken at different times. There are also basic classes of the FFT algorithm, namely decimation in time (DIT) and decimation in frequency (DIF). The outline of the word Fast is interpreted because the FFT formulation is much faster than the previous Fourier Transform algorithm calculation method. [10]. The FFT method requires about 10000 mathematical algorithm operations for data with 1000 observations, 100 times faster than the previous method. The invention of FFT and the development of personal computers, the FFT technique in the data analysis process has become popular, and is one of the standard methods in data analysis. One common form of transformation where  $F(\omega)$  is the signal in the frequency domain and the time domain in the form of f(t) is used to convert the signal from the time domain to the frequency domain is the Fourier transform contained in Equation 1.

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$
(1)

While equation 2 shows the inverse transform function, which returns the frequency domain to the time domain.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$
 (2)

# F. Classification

At the beginning of this stage, the EEG signal data that has been extracted will be divided into 75% of the training data and the remaining 25% for testing data. The SVM technique is used to find the optimal classifier function that can separate two data sets from two different classes. The use of this machine learning technique, because of its convincing performance in predicting a new data class. Furthermore, the training process is carried out with 4 SVM kernels to obtain a classifier model which will later be used to classify the data testing in order to obtain classification results with optimal accuracy.

In real world, linearly separable cases or data cases which can be separated linearly rarely happening. Cases that occur are generally nonlinear. To solve SVM nonlinear problems modified by including kernel functions. The trick in working on SVM nonlinearity is transform the data from the initial coordinate space x into spaces.

The trick in working on SVM nonlinearity is transform the data from the initial coordinate space x into new spaces with functions  $\emptyset(x)$  so as to form a linear boundaries that can be used to separate the data which are desired. This is applied so that further can field boundary search method is carried out as in the process previous linear SVM.

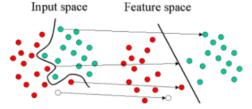



Figure 3. Hyperplane of Nonlinear SVM Illustration

K-fold cross validation is a step to divide the dataset into k subsets, and the holdout method is repeated k times. Every time is executed, one of the data k subsets is used as a test set and k-1 other subset combined as training set. Then, average the output for all k trials is calculated. The advantages of this method is that it doesn't really matter how the data is divided. Every data will only be tested once, and become k-1 times as training sets. An illustration of k-fold cross validation will be shown in Figure 2.4 where in the image it has a value of k of 10. The accuracy shown in the figure is only as an example. This test is done to test all data and avoid data testing that is repeated in stages testing and data sharing is not good.

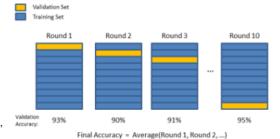



Figure 4. 10 fold Cross Validation Illustration

# TESTING AND RESULT

# A. EEG Data

The data to be tested is data recorded using NeuroSky MindWave according to the conditions previously described. Figure 5 is a representation of the visualization of the EEG recording results. This recording has a sampling frequency of 512 Hz, with a duration of 10 seconds, so one file contains ± 5000 values.

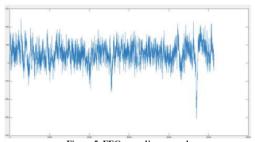



Figure 5. EEG recording example

## B. Processing Data

All recorded data will be processed at the preprocessing stage, namely removing noise and obtaining its features from the EEG signal. The results of running the noise removal function are visualized using Matlab plotting function in Figure 6.

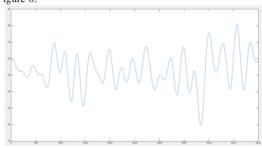



Figure 6. Noise Removal Result

Before the EEG wave can be selected for the signal frequency and taken for its power spectrum value, it is necessary to remove the magnitude. Figure 7 shows the resulting fourier transform wave that is ready for the signal selection process and power spectrum calculation.



Figure 7. Magnitude removal result

While the result of these operations are shown in Tabel 3.

TABEL III. FEATURE SIGNAL EEG VALUE

| Jenis Gelombang | Nilai            |
|-----------------|------------------|
| Delta           | 10489375298.4080 |
| Theta           | 11411547001.8448 |
| Alpha           | 5676671238.27336 |
| Beta            | 5966074854.15926 |

# C. Testing and Training Data

In this test, the classification stage uses a dataset of EEG signal features with a percentage split of 75% for training data and 25% for testing data. In addition to the percentage split, the accuracy calculation is also applied by cross validation with the fold value as a trial scenario [11][12]. There are two kind of testing scenario, the first scenario is testing the value of K parameter in cross validation stage and the second one is comparing SVM classifier with other classifier method such as LDA, PCA, etc.

# 1. Number of k-fold cross validation scenario

One of the test scenarios carried out is an accuracy computation test for k parameters on k-fold cross validation and SVM with linear kernels. This validation process is carried out to test each data existing data on the system by partitioning the data into subsets a number of k. Each subset is used only once testing. The k value tested is 5, 10, and 15.. Figure 8, 9, and 10 are represented of accuracy for every k value.



Figure 6. Accuracy of k=5

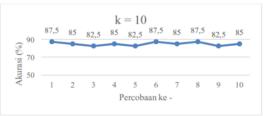



Figure 7. Accuracy of k=10

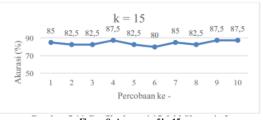



Figure 8. Accuracy of k=15

While Table IV is the average accuracy of k value in k-fold Cross Validation, respectively. The result shown that the highest accuracy is k=5 which is 85%

TABEL IV. AVERAGE ACCURACY OF K VALUE

| K value | Accuracy (%) |
|---------|--------------|
| 5       | 85           |
| 10      | 84           |



Comparing the accuracy value of SVM and other classifier

In order to make sure that SVM is the superlative solution for fatigue detection, the comparison among some classication methods are approached as represented in Table V. Based on the experimental result, SVM obtained the highest accuracy which is 85%.

TABEL V. COMPARISON OF CLASSIFIER

| Classifier | Accuracy |
|------------|----------|
| SVM        | 85%      |
| SVM-LDA    | 82%      |
| PCA        | 80%      |

#### D. Results

The entire dataset with 40 instances is shown in Table 4. A class with a value of 1 indicates normal data, while 0 indicates fatigue data. From the test scenario results, the best classification results were obtained with an average accuracy of 85%. It showed an accuracy of 85% with a value of k=5.

TABEL VI. DATASET OF EEG SIGNALS

| delta       | theta       | alpha       | beta        | class |
|-------------|-------------|-------------|-------------|-------|
| 12203618983 | 6955171046  | 4252237268  | 2362493701  | 1     |
| 6861136625  | 6573293221  | 6041853826  | 6411416285  | 1     |
| 8482967199  | 6634503430  | 3276275656  | 1520138905  | 1     |
| 51394054600 | 37921953897 | 23798352314 | 9819334928  | 1     |
| 10330658097 | 7916013318  | 4537835851  | 2833928911  | 1     |
| 4716821477  | 4030418880  | 3328768161  | 2467382549  | 1     |
| 14893056650 | 7192625352  | 3389639825  | 2201298835  | 1     |
| 12154156505 | 11320710502 | 12121386615 | 7388475499  | 1     |
| 7606083521  | 20780075652 | 12590798580 | 14237051796 | 1     |
| 23065546125 | 32873310780 | 19045062943 | 10320215001 | 1     |
| 12883111235 | 14562303702 | 9364188370  | 2826096735  | 1     |
| 8126357423  | 6900505114  | 4381765012  | 1865086489  | 1     |
| 16346878992 | 56309495208 | 18768564230 | 10131845365 | 1     |
| 19812825319 | 16361611882 | 23821934055 | 7605661339  | 1     |
| 28913474048 | 27902838613 | 25656712630 | 22321677534 | 1     |
| 11895101757 | 9269442559  | 5245744451  | 3068392594  | 1     |
| 19261262302 | 14206914035 | 6189768711  | 3410134097  | 1     |
| 11626640795 | 12579325867 | 5108812293  | 2773001927  | 1     |
| 12209036419 | 12565895230 | 6341221440  | 3437535853  | 1     |
| 27826573702 | 21075947322 | 12403783831 | 9348841731  | 1     |
| 15209255432 | 15145559440 | 18524937244 | 26229940729 | 0     |
| 7024420089  | 5164797416  | 11904060204 | 7210779266  | 0     |

| delta       | theta       | alpha       | beta       | class |
|-------------|-------------|-------------|------------|-------|
| 6154953823  | 5784531965  | 9874686709  | 7183688191 | 0     |
| 9152131287  | 9213156593  | 11425914585 | 8133859107 | 0     |
| 10883157244 | 4623412835  | 11552248548 | 2680756082 | 0     |
| 6514064542  | 6441781318  | 10391330325 | 1835223965 | 0     |
| 1282730086  | 983894688,4 | 3070817731  | 1235848830 | 0     |
| 1467265534  | 1675660439  | 12792485753 | 1699733633 | 0     |
| 1807273433  | 1853424072  | 12502188376 | 1342525286 | 0     |
| 6099069077  | 3150997845  | 2511038257  | 1411477298 | 0     |
| 4958199135  | 2807500565  | 11474602504 | 1523120797 | 0     |
| 1953101488  | 2829624424  | 9662423263  | 1341771436 | 0     |
| 1738711517  | 2903681429  | 8219873470  | 1154818420 | 0     |
| 1338128128  | 2261884375  | 9318037280  | 1258125478 | 0     |
| 1797525814  | 2203379922  | 12730221677 | 1101530333 | 0     |
| 1818196067  | 1848137952  | 10204225144 | 1147982272 | 0     |
| 3612994245  | 2478579508  | 14366549029 | 1371605348 | 0     |
| 2151836377  | 2473095778  | 9226762484  | 1680565640 | 0     |
| 2391016074  | 1675850800  | 13465338962 | 2001935963 | 0     |
| 10511057728 | 11398667599 | 5680675189  | 5952043492 | 0     |

## CONCLUSIONS

Based on the results of trials that have been carried out on EEG signals to determine whether or not a person's mental state is tired, it can be concluded that the Fourier transform method or the one used hereis that the FFT has been able to parse the signal to obtain its features so that it can be classified properly. The Support Vector Machine method used in combination with the kernel is capable of classifying the provided datasets. Based on the test results, the best accuracy for dividing data is 3: 1 with an average value of 85% using a linear kernel. As for the test results using k-fold cross validation, the value of k=5 is obtained with an accuracy of 85%.

# REFERENCES

- H. Kececi and Y. Degimenci, "Quantitative EEG and Cognitive Evoked Potentials in Anemia," Clinical Neurophysiology, pp. 137-143, April 2008.
- [2] Abd Rahman, F. & Othman, M., 2016. Real Time Eye Blink Artifacts Removal in Electroencephalogram Using Savitzky-Golay Referenced Adaptive Filtering. In IFMBE Proceedings. pp. 68–71.
- [3] Chai, R. et al., 2016. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.4654–4657.
- [4] Hendrawan, M. A., Deteksi Kelelahan Mental dengan Menggunakan Sinyal EEG Satu Kanal. Jurnal Sistem Informasi dan Bisnis Cerdas (SIBC), vol 14, 2021.
- [5] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, p. 273, 1995.
- [6] James W. Cooley and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput., vol. 19, pp. 297-301, 1965.
- [7] J. W., P. Lewis and P. Welch Cooley, "The Fast Fourier Transform and its Applications," IEEE Trans on Education, vol. 12, no. 1, pp. 28-34, 1960
- [8] Kai-Quan Shen, Xiao-Ping Li, Chong-Jin Ong, Shi-Yun Shao, and Einar P. V. Wilder-Smith, "EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate," International Federation of Clinical Neurophysiology, pp. 1524-1533, 2008.

DOI: https://doi.org/10/25047/jtit.v9i2.299 @2022 JTIT

# Jurnal Teknologi Informasi dan Terapan (J-TIT) Vol. 9 No. 2 Desember 2020 ISSN: 2580-2291

- [9] N. Andharu F. P. et al., "Analyzing Brainwave Using Single Electroencephalographic Channel To Identify Manufacturing Supervisor Fatigue," in International Conference on Information, Communication Technology and System, Surabaya, 2014, pp. 87-92.
- [10] Samuele M. Marcora, Walter Staiano, and Victoria Manning, "Mental fatigue impairs physical performance in humans," Journal of Applied Physiology, vol. 106, no. 3, pp. 857-864, March 2009.
- [11] Anto Satriyo Nugroho, Arief Budi Witarto, and Dwi Handoko, "Support Vector Machine - Teori dan Aplikasinya dalam Bioinformatika," Kuliah Umum IlmuKomputer.com, 2003.
- [12] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction to Information Retrieval, Online ed. Cambridge, England, United Kingdom: Cambridge University Press, 2009.

DOI: https://doi.org/10/25047/jtit.v9i2.299 ©2022 JTIT

# Fatigue Detection of XYZ Drivers based on Human Brain Wave EEG Signals

**ORIGINALITY REPORT** 

20% SIMILARITY INDEX

10%
INTERNET SOURCES

9%
PUBLICATIONS

**1 2**% STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

4%

repository.uin-malang.ac.id

Internet Source

Exclude quotes

On

Exclude matches

Off

Exclude bibliography