Duelist Algorithm: An Algorithm

nspired by How Duelist

Improve Their Capabilitiesin a
Duel

by Titik Budiati

Submission date: 14-Feb-2023 08:44AM (UTC+0700)
Submission ID: 2013602593

File name: Paper_11_Book_Chapter_-_ICSI.pdf (684.85K)
Word count: 2604

Character count: 13850

Duelist Algorithm: An Algorithm Inspired
by How Duelist Improve Their
Capabilities in a Duel

Totok Ruki Biyanlu”M’, Henokh Yemias Fibrizmt-al._
Gunawan Nugroho', Agus Muhamad Hatta', Emy Listijorini’,
Tink Budi‘dti3._ and Hairul Huda®

' Engineering Physics Department,
Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
trb@ep. its.ac. 1d, Jjoelhenokh@gmail. com
> Mechanical Engineering Department,
Univesitas Sultan Ageng Tirtayasa, Cilegon, Indonesia
* Food Technology Department, State Polytechnic of Jember,
Jember, Indonesia
* Chemical Engineering Department,
Universitas Mulawarman, Samarinda, Indonesia

Abstract. This paper proposes an optimization algorithm based on human fight
and learn from each duelist. The proposed algorithm starts with an initial set of
duelists. The duel is to determine the winner and loser. The loser learns from the
winner, while the winner try their new skill or technique that may improve their
fighting capabiliies. A few duelists with highest fighting capabilities are called
as champion. The champion train a new duelist such as their capabilities. The
new duelist will join the tournament as a representative of each champion. All
duelist are re-evaluated, and the duelists with worst fighting capabilities is
eliminated to maintain the amount of duelists. Several benchmark functions is
used in this work. The results shows that Duelist Algorithm outperform other
algorithms in several functions.

Keywords: Optimization - Algorithm - Duelist - Fighting

1 Introduction

Optimization is a process to achieve something better. Optimization usually consists of
three parts which are optimization algorithm, model and objective function. For
example, let there be a problem f(x) as a model then to find optimum value of x which
1s can be maximum, minimum or at specific value in between 1s the objective function
using an algorithm. Different methods and algorithm have been proposed to solve the
optimization problem. One of the most common methods used for optimization 1s
genetic algorithm (GA) which is based on natural selection by evolving a population of
candidate solution for defined objective function [1]. On the other hand, a different

@ Springer International Publishing Switzerland 2016
Y. Tan et al. (Eds.): ICSI 2016, Part I, LNCS 9712, pp. 3947, 2016.
DOL: 10.1007/978-3-319-41000-5_4

40 T.R. Biyanto et al.

method for optimization called ant colony optimization is inspired by foraging behavior
of real ants [2]. Another type of method is inspired by social behavior of animals which
is called as particle swarm optimization (PSO) [3]. There’s also a method for opti-
mization which inspired by imperialistic competition called imperialist competitive
algorithm (ICA) [4]. All of these mentioned methods are population based algorithm
which 1s mean that there’s a set of population and keep improving itself in each
iterations [5]. There are other optimization algorithms also commonly used such as
predatory search strategy [6]. society and civilization optimization [7] and quantum
evolutionary algorithm [8]. Nowadays, all this optimization methods are very useful for
solving multiple problems such as energy management, scheduling, resource alloca-

tion, etc. [9=11]. q]

In this paper, a new algonthm based on genetic algorithm is proposed which is
inspired by human fighting and learning capabilities. As an overview, In genetic
algorithm there are two ways to develop an individual into a new one. First is crossover
where an individual mate with individual to produce a new offspring, this new off-
spring’s genotype are based on their parents. The second one is mutation where
individual mutate into a new one. In duelist algorithm (DA), all the individual n
population are called as duelist, all those duelists would fight one by one to determine
the champions, winners and losers. The fighting itself just like real life fight where the
strongest has possibility as a loser. There i1s a probability that the weak one would be
lucky enough to win. In order to improve each duelist, there are also two ways to
evolve. One of them is innovation. Innovation is only applicable to the winner. The
other one is called as leaming, losers would learn from winners. In GA, both mutation
and crossover are seem to be blind in producing any solution to find the best solution.
Blind means that each solution or produced individual in genetic algorithm may has not
better solution. In fact, it may fall into the worst one. DA tries to minimize this blind
effect by giving different treatment on duelists based on their classification. This paper
described how duelist algorithm is designed and implemented.

2 Review of a Duel

Duel can be interpreted as a fighting between one or more person(s) with other person
(s). Fighting require physical strength, skill and intellectual capability, for example in
chess and bridge games. Common type of duel. which include physical strength 1s
boxing, boxing is one of world’s most popular sport where two persons need to knock
down each of them under certain rules. In every duel, there are consist of the winner
and the loser as well as the rules. In a match the probability become the winner depend
on strength, skill and luck. After the match, knowing the capabilities of the winner and
the loser are very useful. Loser can learn from how the winner, and winner can improve
the capability and skill by traming or trying something new from the loser. In the
proposed algorithm, each duelist do the same to be unbeatable, by upgrading themself
whether by leaming from their opponent or developing a new technique or skill.

Duelist Algorithm: An Algorithm Inspired 41

3 Duelist Algorithm

The flowchart of proposed algonthm is shown in Fig. 1. First, population of duelist 1s
registered. Duelists have their properties, which is encoded into binary array. All of the
duelists are evaluated to determine their fighting capabiliies. The duel schedule 1s set to
each duelist that contain a set of duel participants. In the duel. each duelist would fight
one on one with other duelist. This one on one fighting is used rather than gladiator
battle to avoid local optimum. Each duel would produce a winner and a loser based on
their fighting capabilities and their ‘luck’. After the match. the champion is also
determined. These champions are the duelist that has the best fighting capabilities.

Then, each winner and loser have opportunity to upgrade their fighting capabilities,
meanwhile each champion train the new duelist as such their capabilities. The new
duelist will join in the next match. Each loser would learn from their opponents how to
be a better duelist by replacing a specific part of their skillset with winner’s skillset. On
the other hand, winner would try to innovate a new skill by changing their skillset
value.

Each duelist fighting capabilities is re-evaluated for the next match. All duelist then
re-evaluated through post-qualification and sorted to determine who will be the
champions. Since there are new duelists that was trained by champions, all the worst
duelists are ellminated to maintain the amount of duelists in the toumament. This
process will continue until the tournament is finished. The systematic explanation as
follow:

3.1 Registration of Duelist Candidate

Each duelist in a duelist set is registered using binary array. Binary amray in duelist
algorithm 1s called as skillset. In a N -dimensional optimization problem, the duelist
would be binary length times N, length array.

3.2 Pre-Qualification
1
Pre-qualification 1s a test that given to each duelists to measure or evaluate their

fighting capabilities based on their skillset.

3.3 Board of Champions Determination

Board of champions is determined to keep the best duelist in the game. Each champion
should trains a new duelist to be as well as himself duel capabilities. This new duelists
would replace the champion position in the game and join the next duel.

3.4 Duel Scheduling Between Duelists

1
The duel schedule between each d@flist 1s set randomly. Each duelist will fight using

their fighting capabilities and luck to determine the winner and the loser. The duel 1s

42 T.R. Biyanto et al.

using a simple logic. If duelist A’s ﬁgnlg capabilities plus his luck are higher than
duelist B's, then list A 1s the winner and vice versa. Duelist’s luck is purely random.
The pseudocode to determine the winner and the loser is shown in Algorithm 1.

Algorithm 1. Determination of the winner and the loser.

Require : Duelist A and B; Luck Coefficient
Where : FC = Fighting Capabi]it?es; LC = Luck Coefficient
A{Luck) = A(FC) * (LC + (random(0-1}) * LC}));
B{Luck) = B(FC) * (LC + (random(0-1) * LC));
If ((A(FC) + A{Luck)) <= (B(FC) + Bi(Luck)))

A (Winner) = 1;

B(Winner) = 0;
Else

A(Winner) = 0;

B(Winner) = 1;

End

3.5 Dueélist’s Improvement

After the match, each duelist are categorized into champion, winner and loser. To
improve each duelist fighting capabilities there are three kind of treatment for each
categories. First treatment 1s for losers, each loser is trained by learning from winner.
Learning means that loser may copy a part of winner’s skillset. The second treatment 1s
for winners, each winner would improve their own capabilities by trying something
new. This treatment consist of winner’s skillset random manipulation. Finally, each
champion would trains a new duelist.

Algorithm 2. Winner and Loser Enhancement.

Require : Duelist A and B;
if A(Winner) = 1;
for i=1:(skillset length)
D = random(Q...1);
If D < Prob Innovate
A(skillset) = rand(0...92);
end
end
else
for i=1:(skillset length)
FE = random(0...1);
If E < Prob_Learn
Alskillset) = Biskillset);
end
end

end

Duelist Algorithm: An Algorithm Inspired 43

3.6 Eﬂinninat?ii

1
Since there are some new duclns‘ joining the game, there must be an elimination to
keep duelists quantity still the same as defined before. Elimination i1s based on each
duelist’s dueling capabilities. The duelist with worst dueling capabilities are eliminated.

REGISTRATION

¥
PRE-QUALIFICATION

Y

DETERMINE BOARD OF CHAMPIONS, CHAMPIONS
TRAINS A NEW DUELIST THAT AS SIMILAR AS HIMSELF

¥

DUEL BETWEEN EACH DUELIST
(CHAMPIONS EXCLUDED)

¥
DETERMINE WINNERS AND LOSERS

I
¥ h 4

WINNER TRAINS HIMSELF LOSER LEARNS FROM
TO BE MORE ADVANCE || WINNER WHO BEATS HIM

¥

POST-QUALIFICATION
¥

ELIMINATE SOME OF
WORST DUELISTS

IS TOURNAMENT
FIMISHED?

YES

Fig. 1. Duelist algorithm flowchart

4 Experimental Studies

This section discuss about Duelist Algorithm performance using a benchmark for
computational speed companson and 10 other benchmarks for algorithm’s robustness
comparison. The detail of these functions are shown as follow:

44 T.R. Biyanto et al.

f = —(\/_rl—yl # cos(x — y) * eoslixly +3)/T))) (1)

While 10 other benchmark functions are benchmark function with noise based on
real-parameter black box optimizaton benchmarking [12]. The 10 mathematical
optimi@tion problems are fi;0, fri1, fi13. fris frie firo. fraoo fiz1 fiz20 fizz. The pro-
posed algorithm is compared with a group of commonly used algonthms including
Genetic Algorithm [1], Particle Swarm Optimization [3] and Imperialist Competitive
Algorithm [4].

4.1 Benchmark Function

Duelist algorithm and several other algorithms are applied on total of 11 benchmark
function. The first functions 15 used to test the algorithm’s computational speed and
other ten functions are used to test the algorithm’s ability in finding the optimum value
and robustness.

4.2 Parameter Setting

The proposed Duelist Algorithm has been tested for optimization problems to show the
advantages of proposed algorithm. The first benchmark was repeated 10 times and the
other ten were repeated 100 times. For the last ten function evaluation, total population
and iteration that used in GA and DA is 100 and 500 respectively. Mutation and
Crossover probability is set at 0.05 and 0.8. For DA, innovate and learning probability
are set as 0.1 and 0.8 respectively with luck coefficient of 0.01. In PSO algorithm, the
velocity constants are set 0.4 and 0.6 and the number of swarms at 100. The number
colonies in ICA 1s set at 100, with initial number of imperialists of 8, revolution rate of
0.4 and number of decades of 500. Some change in algorithm’s parameter are changed
for the first benchmark. The changes in GA are max generation of 200 with mutation
probability and crossover probability of 0.5 and 0.8 respectively. In ICA, the decades
are shorten into 200 decades. In DA, luck coefficient of 0 and max generations of 200.

4.3 Result of First Evaluation

In this section, each algorithm 1s tested using first benchmark function. To provide a
fair comparison, all algorithm used same initial position or population. The average
result of the test are shown as follow:

The experiment shows that DA is able to reach global optimum under lesser
number of iterations that GA and PSO (Fig. 2).

Duelist Algorithm: An Algorithm Inspired

Evaluation

45

Average Result of First

Average of 10 Maximum Solutions

= Duelist Algorithm
== Genetic Algorithm

Particle Swarm Optimization
=== Imperialist Competitive Algorithm

&0

100
n-lterations

120

140

160

180

Fig. 2. Comparison result between algorithms (Color figure online)

4.4 Result of Second Evaluation

200

The statistical results of 100 experiments of ten noisy benchmark functions with twenty
dimensions functions are presented in Table 1. The bold font shows the optimum value
that achieved for each benchmark function. Based on the table, it can be observed that
the proposed algorithm is able to overcome other algorithms. The mean values of
proposed algorithms indicate that DA has a good robustness in finding optimum value.

Table 1. Comparison between algorithms for noisy benchmark function

f GA P50 ICA DA
110 min 61499719 —21.51084 42991794 —125.28074
mean 488552966 847.83925 2648.06026 280.93054
111 min | —134.93092 —134.81238 —132.96055 —135.01945
mean —91.24741 —87.13642 —69.58788 —107.01454
113 min —79.07112 —82.01971 —80.65960 —83.57565
mean —39.25298 —73.02693 —69.48691 7975573
115 min —52.78967 5270470 —27.06354 8 —69.60157
mean 378.56370 T8.94026 219.80703 45.72266
116 min 295.49628 13.41322 2122042 —T70.08705
mean = 224040197 54791493 685.23940 -29.25039
119 min | —57.12290 @ —57.75113 —57.64251 —57.89313
mean —36.13720 —57.33738 —56.95080 —57.86155

(Continued)

46

T.R. Biyanto et al.

Table 1. (Continued)
f GA PSO ICA DA
120 min | —57.89985 —57.89981 | —57.89982| —57.89986
mean | —537.88350 | —57.87494 | 5787659 | —57.88931
121 |'min | —56.01884 | —52.66815| —40.04706| —57.8289%6
mean | —22.50195 6425804 14.71232 | —52.39053
122 | min | —38.63358 —38.66433 | —38.60398| —38.6T088
mean | —38.31492 —38.48721 | —38.41675| —38.51987
123 | min | —38.71998 | —-38.71978| —38.71992| —38.71989
mean | —38.71506 | —38.71104 | —38.71265| —-38.71602
5 Conclusion

In this paper, an optimization algorithm based on how duelist improve himself to win a
fight is proposed. Each individual in the population is called duelist. Each duelist fight
with other duelist to determine who is the winner and the loser. Winner and loser have
their own way of improving themself. The winners are improved by leaming theirself.
In the other hand. loser improve himself by leaming from the winner. After several
improvements and duels, some duelists will become the best solution for given
problem. The algorithm is tested by using 11 different optimization problems. The
result shows that the proposed algorithm 1s able to surpass the other algorithm and
present robust results.

References

. Melanie, M.: An introduction to genetic algorithms, Cambrdge, Massachusetts London,

England, Fifth printing, vol. 3 (1999}

2. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344,
243-278 (2005)

3. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1, 33-57
(2007)

4. Atashpaz-Gargari, E.. Lucas, C.: Imperalist competitive algorithm: an algorithm for
optimization inspired by imperalistic competition. In: IEEE Congress on Evolutionary
computation, CEC 2007, pp. 46614667 (2007)

5. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.
94, 392404 (1996)

6. Linhares, A.: Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans. Evol.
Comput. 3, 147-152 (1999)

7. Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386-396 (2003)

8. Han, K.-H. Kim, J-H. Quantum-inspired evolutionary algorithm for a class of

combinatorial optimization. IEEE Trans. Evol. Comput. 6, 580-593 (2002)

1.

1.

Duelist Algorithm: An Algorithm Inspired 47

. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling.

Naval Res. Logistics (NRL) 45, 733-750 (1998)

Dandy, G.C., Simpson, AR., Murphy, L.J.: An improved genetic algorithm for pipe
network optimization. Water Resour. Res. 32, 449458 (1996)

Balci, HH., Valenzuela, J.F.: Scheduling electric power generators using particle swarm
optimization combined with the Lagrangian relaxation method. Int. J. Appl. Math. Comput.
Sci. 14, 411422 (2004)

Hansen, N.. Auger, A., Finck, 5., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: experimental setup (2010}

Duelist Algorithm: An Algorithm Inspired by How Duelist
Improve Their Capabilities in a Duel

ORIGINALITY REPORT

5. Os Do Os

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Nipan Kumar Das Das, Mrinal Buragohain. "A 50/
neoteric closed loop feedback controller ’
based on correlative-elemental curvature
algorithm", Circuit World, 2021

Publication

M.-H. Tayarani-N., M.-R. Akbarzadeh-T.. 1 o
"Magnetic-inspired optimization algorithms:
Operators and structures", Swarm and
Evolutionary Computation, 2014

Publication

Exclude quotes On Exclude matches <1%

Exclude bibliography On

