
Duelist Algorithm: An Algorithm Inspired
by How Duelist Improve Their

Capabilities in a Duel

Totok Ruki Biyanto1(&), Henokh Yernias Fibrianto1,
Gunawan Nugroho1, Agus Muhamad Hatta1, Erny Listijorini2,

Titik Budiati3, and Hairul Huda4

1 Engineering Physics Department,
Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
trb@ep.its.ac.id, joelhenokh@gmail.com

2 Mechanical Engineering Department,
Univesitas Sultan Ageng Tirtayasa, Cilegon, Indonesia

3 Food Technology Department, State Polytechnic of Jember,
Jember, Indonesia

4 Chemical Engineering Department,
Universitas Mulawarman, Samarinda, Indonesia

Abstract. This paper proposes an optimization algorithm based on human fight
and learn from each duelist. The proposed algorithm starts with an initial set of
duelists. The duel is to determine the winner and loser. The loser learns from the
winner, while the winner try their new skill or technique that may improve their
fighting capabilities. A few duelists with highest fighting capabilities are called
as champion. The champion train a new duelist such as their capabilities. The
new duelist will join the tournament as a representative of each champion. All
duelist are re-evaluated, and the duelists with worst fighting capabilities is
eliminated to maintain the amount of duelists. Several benchmark functions is
used in this work. The results shows that Duelist Algorithm outperform other
algorithms in several functions.

Keywords: Optimization � Algorithm � Duelist � Fighting

1 Introduction

Optimization is a process to achieve something better. Optimization usually consists of
three parts which are optimization algorithm, model and objective function. For
example, let there be a problem f(x) as a model then to find optimum value of x which
is can be maximum, minimum or at specific value in between is the objective function
using an algorithm. Different methods and algorithm have been proposed to solve the
optimization problem. One of the most common methods used for optimization is
genetic algorithm (GA) which is based on natural selection by evolving a population of
candidate solution for defined objective function [1]. On the other hand, a different

© Springer International Publishing Switzerland 2016
Y. Tan et al. (Eds.): ICSI 2016, Part I, LNCS 9712, pp. 39–47, 2016.
DOI: 10.1007/978-3-319-41000-5_4



method for optimization called ant colony optimization is inspired by foraging behavior
of real ants [2]. Another type of method is inspired by social behavior of animals which
is called as particle swarm optimization (PSO) [3]. There’s also a method for opti-
mization which inspired by imperialistic competition called imperialist competitive
algorithm (ICA) [4]. All of these mentioned methods are population based algorithm
which is mean that there’s a set of population and keep improving itself in each
iterations [5]. There are other optimization algorithms also commonly used such as
predatory search strategy [6], society and civilization optimization [7] and quantum
evolutionary algorithm [8]. Nowadays, all this optimization methods are very useful for
solving multiple problems such as energy management, scheduling, resource alloca-
tion, etc. [9–11].

In this paper, a new algorithm based on genetic algorithm is proposed which is
inspired by human fighting and learning capabilities. As an overview, in genetic
algorithm there are two ways to develop an individual into a new one. First is crossover
where an individual mate with individual to produce a new offspring, this new off-
spring’s genotype are based on their parents. The second one is mutation where an
individual mutate into a new one. In duelist algorithm (DA), all the individual in
population are called as duelist, all those duelists would fight one by one to determine
the champions, winners and losers. The fighting itself just like real life fight where the
strongest has possibility as a loser. There is a probability that the weak one would be
lucky enough to win. In order to improve each duelist, there are also two ways to
evolve. One of them is innovation. Innovation is only applicable to the winner. The
other one is called as learning, losers would learn from winners. In GA, both mutation
and crossover are seem to be blind in producing any solution to find the best solution.
Blind means that each solution or produced individual in genetic algorithm may has not
better solution. In fact, it may fall into the worst one. DA tries to minimize this blind
effect by giving different treatment on duelists based on their classification. This paper
described how duelist algorithm is designed and implemented.

2 Review of a Duel

Duel can be interpreted as a fighting between one or more person(s) with other person
(s). Fighting require physical strength, skill and intellectual capability, for example in
chess and bridge games. Common type of duel, which include physical strength is
boxing, boxing is one of world’s most popular sport where two persons need to knock
down each of them under certain rules. In every duel, there are consist of the winner
and the loser as well as the rules. In a match the probability become the winner depend
on strength, skill and luck. After the match, knowing the capabilities of the winner and
the loser are very useful. Loser can learn from how the winner, and winner can improve
the capability and skill by training or trying something new from the loser. In the
proposed algorithm, each duelist do the same to be unbeatable, by upgrading themself
whether by learning from their opponent or developing a new technique or skill.

40 T.R. Biyanto et al.



3 Duelist Algorithm

The flowchart of proposed algorithm is shown in Fig. 1. First, population of duelist is
registered. Duelists have their properties, which is encoded into binary array. All of the
duelists are evaluated to determine their fighting capabilities. The duel schedule is set to
each duelist that contain a set of duel participants. In the duel, each duelist would fight
one on one with other duelist. This one on one fighting is used rather than gladiator
battle to avoid local optimum. Each duel would produce a winner and a loser based on
their fighting capabilities and their ‘luck’. After the match, the champion is also
determined. These champions are the duelist that has the best fighting capabilities.

Then, each winner and loser have opportunity to upgrade their fighting capabilities,
meanwhile each champion train the new duelist as such their capabilities. The new
duelist will join in the next match. Each loser would learn from their opponents how to
be a better duelist by replacing a specific part of their skillset with winner’s skillset. On
the other hand, winner would try to innovate a new skill by changing their skillset
value.

Each duelist fighting capabilities is re-evaluated for the next match. All duelist then
re-evaluated through post-qualification and sorted to determine who will be the
champions. Since there are new duelists that was trained by champions, all the worst
duelists are eliminated to maintain the amount of duelists in the tournament. This
process will continue until the tournament is finished. The systematic explanation as
follow:

3.1 Registration of Duelist Candidate

Each duelist in a duelist set is registered using binary array. Binary array in duelist
algorithm is called as skillset. In a Nvar-dimensional optimization problem, the duelist
would be binary length times Nvar length array.

3.2 Pre-Qualification

Pre-qualification is a test that given to each duelists to measure or evaluate their
fighting capabilities based on their skillset.

3.3 Board of Champions Determination

Board of champions is determined to keep the best duelist in the game. Each champion
should trains a new duelist to be as well as himself duel capabilities. This new duelists
would replace the champion position in the game and join the next duel.

3.4 Duel Scheduling Between Duelists

The duel schedule between each duelist is set randomly. Each duelist will fight using
their fighting capabilities and luck to determine the winner and the loser. The duel is

Duelist Algorithm: An Algorithm Inspired 41



using a simple logic. If duelist A’s fighting capabilities plus his luck are higher than
duelist B’s, then duelist A is the winner and vice versa. Duelist’s luck is purely random.
The pseudocode to determine the winner and the loser is shown in Algorithm 1.

Algorithm 1. Determination of the winner and the loser.

3.5 Duelist’s Improvement

After the match, each duelist are categorized into champion, winner and loser. To
improve each duelist fighting capabilities there are three kind of treatment for each
categories. First treatment is for losers, each loser is trained by learning from winner.
Learning means that loser may copy a part of winner’s skillset. The second treatment is
for winners, each winner would improve their own capabilities by trying something
new. This treatment consist of winner’s skillset random manipulation. Finally, each
champion would trains a new duelist.

Algorithm 2. Winner and Loser Enhancement.

42 T.R. Biyanto et al.



3.6 Elimination

Since there are some new duelists joining the game, there must be an elimination to
keep duelists quantity still the same as defined before. Elimination is based on each
duelist’s dueling capabilities. The duelist with worst dueling capabilities are eliminated.

4 Experimental Studies

This section discuss about Duelist Algorithm performance using a benchmark for
computational speed comparison and 10 other benchmarks for algorithm’s robustness
comparison. The detail of these functions are shown as follow:

Fig. 1. Duelist algorithm flowchart

Duelist Algorithm: An Algorithm Inspired 43



f ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 � cos x � yð Þ � ecosððx� yþ 5ð Þ=7ÞÞÞ
q

ð1Þ

While 10 other benchmark functions are benchmark function with noise based on
real-parameter black box optimization benchmarking [12]. The 10 mathematical
optimization problems are f110, f111, f113, f115, f116, f119, f120, f121, f122, f123. The pro-
posed algorithm is compared with a group of commonly used algorithms including
Genetic Algorithm [1], Particle Swarm Optimization [3] and Imperialist Competitive
Algorithm [4].

4.1 Benchmark Function

Duelist algorithm and several other algorithms are applied on total of 11 benchmark
function. The first functions is used to test the algorithm’s computational speed and
other ten functions are used to test the algorithm’s ability in finding the optimum value
and robustness.

4.2 Parameter Setting

The proposed Duelist Algorithm has been tested for optimization problems to show the
advantages of proposed algorithm. The first benchmark was repeated 10 times and the
other ten were repeated 100 times. For the last ten function evaluation, total population
and iteration that used in GA and DA is 100 and 500 respectively. Mutation and
Crossover probability is set at 0.05 and 0.8. For DA, innovate and learning probability
are set as 0.1 and 0.8 respectively with luck coefficient of 0.01. In PSO algorithm, the
velocity constants are set 0.4 and 0.6 and the number of swarms at 100. The number
colonies in ICA is set at 100, with initial number of imperialists of 8, revolution rate of
0.4 and number of decades of 500. Some change in algorithm’s parameter are changed
for the first benchmark. The changes in GA are max generation of 200 with mutation
probability and crossover probability of 0.5 and 0.8 respectively. In ICA, the decades
are shorten into 200 decades. In DA, luck coefficient of 0 and max generations of 200.

4.3 Result of First Evaluation

In this section, each algorithm is tested using first benchmark function. To provide a
fair comparison, all algorithm used same initial position or population. The average
result of the test are shown as follow:

The experiment shows that DA is able to reach global optimum under lesser
number of iterations that GA and PSO (Fig. 2).

44 T.R. Biyanto et al.



4.4 Result of Second Evaluation

The statistical results of 100 experiments of ten noisy benchmark functions with twenty
dimensions functions are presented in Table 1. The bold font shows the optimum value
that achieved for each benchmark function. Based on the table, it can be observed that
the proposed algorithm is able to overcome other algorithms. The mean values of
proposed algorithms indicate that DA has a good robustness in finding optimum value.

Fig. 2. Comparison result between algorithms (Color figure online)

Table 1. Comparison between algorithms for noisy benchmark function

f GA PSO ICA DA

110 min 614.99719 −21.51084 429.91794 −125.28074
mean 4885.52966 847.83925 2648.06026 280.93054

111 min −134.93092 −134.81238 −132.96055 −135.01945
mean −91.24741 −87.13642 −69.58788 −107.01454

113 min −79.07112 −82.01971 −80.65960 −83.57565
mean −59.25298 −73.02693 −69.48691 −79.75573

115 min −52.78967 −52.70470 −27.06354 −69.60157
mean 378.56370 78.94026 219.80703 45.72266

116 min 295.49628 13.41322 21.22042 −70.08705
mean 2240.40197 547.91493 685.23940 −29.25039

119 min −57.12290 −57.75113 −57.64251 −57.89313
mean −56.13720 −57.33738 −56.95080 −57.86155

(Continued)

Duelist Algorithm: An Algorithm Inspired 45



5 Conclusion

In this paper, an optimization algorithm based on how duelist improve himself to win a
fight is proposed. Each individual in the population is called duelist. Each duelist fight
with other duelist to determine who is the winner and the loser. Winner and loser have
their own way of improving themself. The winners are improved by learning theirself.
In the other hand, loser improve himself by learning from the winner. After several
improvements and duels, some duelists will become the best solution for given
problem. The algorithm is tested by using 11 different optimization problems. The
result shows that the proposed algorithm is able to surpass the other algorithm and
present robust results.

References

1. Melanie, M.: An introduction to genetic algorithms, Cambridge, Massachusetts London,
England, Fifth printing, vol. 3 (1999)

2. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344,
243–278 (2005)

3. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1, 33–57
(2007)

4. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary
computation, CEC 2007, pp. 4661–4667 (2007)

5. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.
94, 392–404 (1996)

6. Linhares, A.: Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans. Evol.
Comput. 3, 147–152 (1999)

7. Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386–396 (2003)

8. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE Trans. Evol. Comput. 6, 580–593 (2002)

Table 1. (Continued)

f GA PSO ICA DA

120 min −57.89985 −57.89981 −57.89982 −57.89986
mean −57.88350 −57.87494 −57.87659 −57.88931

121 min −56.01884 −52.66815 −40.04706 −57.82896
mean −22.50195 64.25804 14.71232 −52.39053

122 min −38.63358 −38.66433 −38.60398 −38.67088
mean −38.31492 −38.48721 −38.41675 −38.51987

123 min −38.71998 −38.71978 −38.71992 −38.71989
mean −38.71506 −38.71104 −38.71265 −38.71602

46 T.R. Biyanto et al.



9. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling.
Naval Res. Logistics (NRL) 45, 733–750 (1998)

10. Dandy, G.C., Simpson, A.R., Murphy, L.J.: An improved genetic algorithm for pipe
network optimization. Water Resour. Res. 32, 449–458 (1996)

11. Balci, H.H., Valenzuela, J.F.: Scheduling electric power generators using particle swarm
optimization combined with the Lagrangian relaxation method. Int. J. Appl. Math. Comput.
Sci. 14, 411–422 (2004)

12. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: experimental setup (2010)

Duelist Algorithm: An Algorithm Inspired 47


	Duelist Algorithm: An Algorithm Inspired by How Duelist Improve Their Capabilities in a Duel
	Abstract
	1 Introduction
	2 Review of a Duel
	3 Duelist Algorithm
	3.1 Registration of Duelist Candidate
	3.2 Pre-Qualification
	3.3 Board of Champions Determination
	3.4 Duel Scheduling Between Duelists
	3.5 Duelist’s Improvement
	3.6 Elimination

	4 Experimental Studies
	4.1 Benchmark Function
	4.2 Parameter Setting
	4.3 Result of First Evaluation
	4.4 Result of Second Evaluation

	5 Conclusion
	References


