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Abstract 

Monitoring in the anaerobic bioreactor system is requiring understanding the 

occurred situation in the bioreactor process. Bioreactor is complex designed to 

accelerate waste degradation by combining attributes of the aerobic and 

anaerobic bioreactors involves many variables. Multivariate Statistical Process 

Control (MSPC) models are a statistical solution to the problem of directly 

calculating physical and biological properties of molecules from their physical 

structure. QSAR model is utilized to extract information from a set of numerical 

descriptors characterizing molecular structure and use this information to 

develop inductively a relationship between structure and property. The goal of a 

(MSPC) model is to replace the conventional methods univariate Statistical 

Process Control (SPC) to analyze the state of the multivariate process of 

anaerobic bioreactor. The objective of the sequential aerobic-anaerobic 

treatment is to cause the rapid biodegradation of degradable waste in the aerobic 

stage in order to reduce the production of organic acids in the anaerobic stage 

resulting in the earlier onset of methanogenesis. The monitoring of process uses 

principal component analysis (PCA) to reduce multivariate data. Further, 

hotelling T² values were used to monitor the quality of the bioreactor operating 

condition. Hence, fuzzy logic was used to determine the present condition of 

the bioreactor based on the value of T² related. The simulation results indicate 

that the offered method is able to determine four bioreactor process states, i.e. 

normal, organic overload, hydraulic overload, and fluctuations in temperature, 

with the success rate 100%. 

Keywords: Bioreactor, Multivariate statistical process control, Principal 

                  component analysis, Fuzzy logic. 

 



Recent Developments of Monitoring in the Anaerobic Bioreactor System     57 

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

Nomenclatures 
 

A1 Factor of input Sc variable 

A2 Factor of input S2 variable 

A3 Factor of input D variable 

B Bicarbonate, mol/L 

CO2D Dissolve carbon dioxide, mol/L 

D Dilution rate, hr 

H
+
 Hydrogen ion, mol/L 

HS Acid (non ionized) form of S2 , mol/L 

IC Inorganic carbon, mol/L 

Ka Equilibrium constant of H
+
S

-
, mol/L 

Kb Equilibrium constant of H
+
B, mol/L 

Kh Henry’s constant, mmol/L/Atm 

KI2 Inhibition constant of substrate S2, mmol/L 

KIC  Inhibition constant of substrate Sc, g/L 

KS2 Dissociation constant of substrate S2, mmol/L 

KSc Dissociation constant of substrate Sc, g/L 

N Number of data 

PCO2 Partial pressure for the dissolved carbon dioxide, Atm 

PR Matrix of principal component 

Pt Total  pressure, Atm 

QCH4 Flow rate of CH4 output, L/hr 

QCO2 Flow rate of CO2 output, L/hr 

R1 Substrate degradation 

R2 S2 production, mmol/g 

R3 S2 consumption, mmol/g 

R4 CO2 production by Xc, mmol/g 

R5 CO2 production by X2, mmol/g 

R6 CH4 production, mmol/g 

S Standard deviation 

S
-
 Base (ionized) form of S2 , mol/L 

S2 Fastly degradable substrate, g/L 

Sc Slowly degradable substrat, g/L 

SR Matrix containing R first eigen value in its diagonal 

T Temperature, 
o
C 

T
2
 Hotelling T

2
 value 

tR Score space 

U Unitary matrix  

V Matrix containing the eigenvector 

X Input data 

X2 Methanogenic bacteria, g/L 

Xc Acidogenic bacteria, g/L 

x  Mean 

x%  Residual 

x̂  Projection matrix X 

Z Total  kation, mol/L 
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Subscript 

C Acidogenic  bacteria 

I Index of batch process 

In Input 

J Index of measured variable 

K Index of times 

Max Maximum 

R Number of principal component 

0 Initial condition 

2 Methanogenic bacteria 

Greek Symbols 

θ Activation energy, kJ/mol 

λ Coefficient of gaseous carbon dioxide 

µ2 Specific growth rate of methanogenic bacteria, 1/hr 

µχ Specific growth rate of acidogenic bacteria, 1/hr 

Σ Diagonal matrix containing the nonnegative square roots of the 

Eigen values of x
T
x, ordered from the largest to the smallest 

 

 

1.  Introduction 

A bioreactor is a container in which is carried out a chemical process which 

involves organisms or biochemically active derivative substances from such 

organisms. Bioreactors are frequently cylindrical, ranging in size from several 

liter to cube meters, and are often made of stainless steel. 

Bioreactor design is fairly a complex engineering mission. Under optimum 

conditions, the microorganisms or cells will reproduce at surprising rate. The 

container's environmental conditions like gas (i.e., air, oxygen, nitrogen, carbon 

dioxide) flow rates, temperature, pH and dissolved oxygen levels, and agitation 

speed require monitoring and controlling. A single bioreactor manufacturer, 

Broadly-James Corporation, uses vessels, sensors, controllers, and a control 

system, digitally networked together for their bioreactor scheme.  

Continuous flow stirred tank reactors in the continuous flow, stirred tank 

reactor (CSTR) fresh medium was feed into the bioreactor at a constant rate, and 

medium mixed with cells leaves the bioreactor at the same rate. A fixed 

bioreactor volume is maintained and ideally, the effluent stream should have the 

same composition as the bioreactor contents. The culture is fed with fresh 

medium containing one and sometimes two growth limiting nutrients such as 

glucose. The concentration of the cells in the bioreactor is controlled by the 

concentration of the growth-limiting nutrient. A steady state cell concentration is 

reached where the cell density and substrate concentration are constant. The cell 

growth rate, µ , is controlled by the dilution rate, D, of growth limiting nutrient. 

Cell culture bioreactors classified into two types, those that utilized for 

cultivation of anchorage dependent cells (e.g., primary cultures derived from 

normal tissues and diploid cell lines. Those that used for the cultivation of 

suspended mammalian cells (e.g., cell lines derived from cancerous tissues and 

tumors, transformed diploid cell lines, hybridomas). In some cases, the bioreactor 
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may be modified to grow both anchorage dependent and suspended cells. Ideally, 

any cell culture bioreactor must maintain a sterile culture of cells in medium 

conditions, which maximize cell growth and productivity. 

Anaerobic wastewater treatment systems generally use the anaerobic 

bioreactor. In this bioreactor occurred biological process that converts the 

substrate or organic waste into methane (CH4) and carbon dioxide CO2 by 

utilizing the activity of microorganisms in the environment without air 

(anaerobic). Microorganisms can grow by consuming the available nutrients or 

substrate on support environmental conditions. 

Determination of optimal substrate feed rate is a problem in singular control, 

so called because the control variable appears linearly both in the dynamic 

equations describing the process and/or in the performance index which is to be 

optimized. In many industrially important fermentation processes, 

microorganisms require more than one substrate for their growth and product 

formation [1]. It has long been realized that the production of antibiotics and 

enzymes requires precise control of the nitrogen source in addition to the carbon 

source. The production of a desired chemical from recombinant cell cultures often 

involves addition of either an inducer or repressor along with the primary growth-

limiting nutrient. The optimization problem for such processes involves the 

determination of the optimal feed rates of two nutrients: either two growth-

limiting substrates such as carbon and nitrogen or one growth-limiting substrate 

and an inducer or a repressor. The feed rate optimization of fed-batch bioreactors 

involving multiple singular control variables is a numerically difficult problem. 

Bioreactor is extremely vulnerable to fluctuations in the substrate, temperature 

and pH [2]. Those variables affect the viability of microorganisms. When these 

variables are not maintained, they will result in death of microorganisms and 

further microorganisms in the reactor will totally dead. This event is called 

washout and recovery time for this event requires a long time. Hence, a 

monitoring system is required to give information about the state of the process 

and about the process behaviour. Then, based on that information, further 

handling or action can be taken to ensure optimal running of the plant. 

Anaerobic bioreactor is a complex process therefore; it involves multiple 

process variables, including physical and chemical variables. Due to the number 

of variables, it will be difficult to design a control or monitoring system for the 

process. To solve this problem, it can be used the Multivariate Statistical Process 

Control (MSPC) method. MSPC changes multidimensional information into a 

number of latent variables that explain the variability of the measured variable, 

including the relations between measured variables. MSPC makes use of 

statistical methods to analyze, control and influence improvement on process 

performance based on the existing multivariable.  

Reducing multivariable to a few main variables can be done by using the 

Principle Component Analysis (PCA) [3]. The use of PCA to diagnose the 

condition and behaviour of an anaerobic bioreactor has been reported by Olson 

[4] for a batch system. However, the latent variable acquired from PCA cannot 

explain the condition of the ongoing process. This can cause difficulties for 

operators to interpret them into physical forms. Therefore, to interpret these new 

variables and to classify the current condition of the process, an algorithm for 

decision-making is required.  
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Marco S. R. et al. [5] presented an approach for conducting multivariate 

statistical process control (MSPC) in noisy environments, i.e., when the signal to 

noise ratio is low, and, furthermore, noise standard deviation (uncertainty) 

affecting every collected value can vary over time, and is assumingly known. This 

approach is based upon a latent variable model structure, HLV (standing for 

heteroscedastic latent variable model), that explicitly integrates information 

regarding data uncertainty. Reasonable amounts of missing data can also be 

handled in a coherent and fully integrated way through HLV. Various examples 

exhibit the added value achieved under noisy conditions by adopting such an 

approach and a case study illustrates its application to a real industrial context of 

pulp and paper product quality data analysis. 

The use of fuzzy as decision makers has been conducted by the researchers. 

Murnleitner et al. [6] used a fuzzy logic system in order to predict the biological 

state of the reactors.  Carrasco et al. [7] have developed a diagnosis system based 

fuzzy logic for the determination of acidification states on an anaerobic 

wastewater treatment plants. In this paper, monitoring system algorithm based on 

fuzzy assisted multivariate statistical process control for oxidation ditch has 

developed. However, PCA was applied statically in the data matrix X, since it 

was assumed there was no correlation over time. When this is the case the exact 

relations between the variables will not be revealed. In this paper, the algorithm 

was refined to handle this dynamic PCA for continuous process and was applied 

to a plant bioreactor by a simulation. 

 

2.  Anaerobic Bioreactor Model  

Substrate of organic waste is very complex, so it is impossible to include the 

overall organic material conditions into a model. But there are approaches that 

can be used to anticipate the complex nature of the substrate, i.e., by representing 

them into two groups, namely the equivalent glucose substrate (Glucose, Sc) and 

the equivalent acetic acid substrate (acetate, S2) [2]. 

The choice of the number of considered bacterial populations involved in the 

anaerobic bioreactor process directly linked to the model complexity. Since the 

objective is to obtain a model that would be able to represent the destabilization 

phenomenon while being identifiable, it is assumed that bacterial population can be 

divided into two main groups of homogeneous characteristics and that the anaerobic 

digestion can be described by a two stage process. In the first step (acidogenesis), 

the acidogenic bacteria (Xc) consume the organic substrate Sc and produce inorganic 

carbon (IC) and acetic acid (S2) with the specific growth rate µc. The population of 

methanogenic bacteria (X2) uses in a second step acetic acid (S2) as substrate for 

growth and produce dissolved inorganic carbon (IC) and methane (CH4). Substrate 

S2 is a weak acid dispatched between HS (acid form) and S
−
 (base form). It is 

important to notice that HS excess inhibits the growth rates µ2.  

The inorganic carbon IC is made up of dissolved inorganic carbon, which is, 

dispatched between the bicarbonate base form (B) and the dissolved carbon 

dioxide acid form (CO2), following an equilibrium function on the pH. Gaseous 

carbon dioxide (CO2) was, transferred in the gas phase from dissolved CO2. The 

simplified functional diagram of anaerobic bioreactor process is shown in Fig. 1. 
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Fig. 1. Functional Diagram of Anaerobic Digestion [2]. 

 

Stage of the process that occurred in the bioreactor can be can be explained by 

a number of algebraic equations describing the physical-chemical equilibrium and 

differential equations that describe the dynamics of the system, as well as 

supported by several equations that describe biological processes in the 

bioreactor. The complete model is as follows [2]: 

The systems of equations describing chemical equilibrium have a individual 

algebraic structure which can be exploited to significantly reduce their algebraic 

complexity as follow: 

02 =−+ − SSHS
                 (1) 

0=−−+ HSKSH a                  (2) 

02 =−+ ICCOB D                  (3) 

02 =−+
DbCOKBH

                 (4) 

0=−+ − ZSB                                     (5) 

The differential equations describing the dynamics of the systems as follow: 

( ) CC
C XD

dt

dX
.−= µ

                 (6) 

( )CCinCC
C SSDXR

dt

dS
−+−= ...1 µ

                              (7) 

( ) 22
2 .XD

dt

dX
−= µ

                 (8) 

( )222223
2 ..... SSDXRXR

dt

dS
inCC −++−= µµ

                             (9) 

-IC)D(ICXRXRXR
dt

dIC
inCC +−+= 2254225 ........ µλµµ

                          (10) 

( )ZZD
dt

dZ
in −=

                                  (11) 

Output equations that are consider as the process output. 

226 ..
4

XRQCH µ=                           (12) 

226 ...
2

XRQCO µλ=                          (13)  



62       K. Indriawati et al.                          

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

with 

h

D
CO

K

CO
P 2

2
=                          (14) 

2

2

COt

CO

PP

P

−
=λ                                                                            (15) 

2

2
max2

2

2

.

I
S

K

HS
HSK

HS

++

=
µ

µ                              (16) 

IC

C
CS

CC
C

K

HSS
SK

S

C

.

.max

++

=
µ

µ                              (17) 

where: R1, R2, R3, R4, R5, and R6 are the yield coefficients. µ1 and µ2 are the 

Haldane growth rates. λ is a coefficient for gaseous carbon dioxide. D is dilution 

rate. KIC stands for the inhibition constant for substrate Sc, KI2 stands for the 

inhibition constant for substrate S2, KSc stands for the dissociation constant for 

substrate Sc and inorganic carbon, KS2 stands for the dissociation constant for 

substrate S2 and others acids, Kh stands for an equivalent of the Henry constant, 

PCO2 stands for the partial pressure for the dissolved carbon dioxide and Pt stands 

for the atmospheric pressure. 

While the relationship between growth rate and temperature can be explained 

by the formulas from Arhenius, as follows [8]: 














=

−
T

CC

c

e

θ

µµ 0,max

               (18) 














=

−
Te

2

0,2max2

θ

µµ

              (19) 

Hypothetically, and through literature [9], there are seven modes of unstable 

bioreactor conditions. However, at this paper, the considered state mode for the 

plant comprises of normal mode, organic overload, hydraulic overload, and 

temperature change. To acquire simulation data, it was assumed that for every 

Fstate, changes in input variables are occured as described in Table 1.  

Table 1. State Mode in Bioreactor. 

Condition State in Bioreactor 

Normal behavior No changes that affects the process state 

Organic overload Provision of excess substrate to make a drastic 

growth of biomass, making an imbalance in the 

reactor and the reactor slowly poisoned and 

biomass - dead land 

Hydraulic overload Dilution are given in the bioreactor was too 

excessive, so that biomass cannot be adapted and 

then die 

Temperature 

fluctuation 

Conditions where temperatures are beyond the 

range of biomass, so biomass death 
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3.  Monitoring System Design 

The design of monitoring system based MSPC are mentioned in the following section:  

• Multiway PCA Implementation 

Principal Component Analysis (PCA) is one of MSPC methods, which are usually 

applies to analyze a set of variables. The purpose of PCA is to reduce data 

dimension by finding a new variables (called as principal components) which is a 

linear combination of the original set of variables so that  the variation of the new 

components became maximum and the new components became independent to 

each other. There are some PCA methods that have been developed, and for the 

monitoring system design in this paper, the applied method is multi-way principal 

component analysis (MPCA). 

In simple terms, the data grouping in MPCA is described in Fig. 2. Measurement 

data acquired from bioreactor is grouped based on the matrix x ∈ R
IJK

, for i bioreactor 

with j = 1,2...J measurement variable based on time k = 1, 2...K. The matrix data (I×J) 

represents the numbers of bioreactor variables j = 1, 2....J, and the matrix (J×K) at 

horizontal side represent changes in every variable for bioreactor at time of k. 

 

Fig. 2. Data Grouping in MPCA. 

The principle components are not correlated to each other and group from the 

smallest to biggest variant. The first principle component is the linear combination 

of the maximum variant value. Generally the MPCA method is described in Fig. 3. 

 
 

Fig. 3. The Flowcart of MPCA Method. 



64       K. Indriawati et al.                          

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

In MPCA, the data must be changed into 2 dimensional form. From the 

simulation result of the bioreactor model, a three dimensional data is acquired 

(i,j,k) for i bioreactor, j measurement variable, and k time. Then they are grouped 

into a (ij×k) matrix form. For the case in this paper, i = 1 and k = 1500 with 

sampling time of 1 hour. j is the number of variables (pH, flow rate of CH4, and 

temperature). Mean of each variable can be determine as: 

∑
=

=
n

k

kj x
n

x
1

1
                                                         (20) 

and the standard deviation is: 

( )∑
=

−
−

=
n

k

jkjj xx
n

s
1

2

1

1
             (21) 

The principal compo 

Principle components can be calculated directly or, more commonly, after 

different centering and scaling operations on the data matrix x according to:  

s

xx jj −
 

One of the techniques to find principle components are Singular Value 

Decomposition (SVD) algorithm, where the matrix for principle components and 

it's variations could be find directly. In singular value decomposition, SVD, the 

matrix x is decomposed according to:  

TVUx Σ=              (22) 

which U is a matrix (k×j), V is a matrix (j×j), T is transpose matrix operator 

and Σ is a diagonal matrix (k×j) containing the eigenvalue of covariance matrix x, 

i.e., σ on the diagonal. The largest singular value (σ) in column of matrix V, (p1), 

determines the direction of the first principal component, and the second largest 

singular value (σ) in column of matrix V, (p2), determines the direction of the 

second principal component, and so on.  

Each observation in time ( ) J
Rkx ∈  of the variables is projected on to the score 

space tR(k), by multiplying x(k) with matrix of principal components P
R
T

, with R 

is the number of principal components in the model, and it is defined as:  

( ) ( )kxP=kt T
RR               (23) 

A new matrix projection is acquired and giving the residual 

( ) ( )ktP=kx RR               (24) 

( ) ( ) ( )kxkx=kx ˆ~ −               (25) 

To determine if the value of principle component stays within the limit, a 

statistical test Hotelling T² control map is used to check whether the process is in 

controlled state. The statistical test used is: 

( ) ( )kRRR tSt=kT
12 −              (26) 

which RR

R RS
×∈   is the  matrix containing R first eigenvector.  
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• Determining State Mode Using Fuzzy 

From the hotelling T² control chart, it can be acquired the data of the deviation 

value in every state, by finding the mean and deviation from the T
2
 value. Then, 

those values are used to build a membership function for the input of fuzzy 

(takagi sugeno).  

The fuzzy rule for  determining bioreactor condition is: 

If  (input 1 is state 1) then (output is state 1) 

 

 

4.  Results and Discussion 

• Model Response for Some State Mode 

From the SVD result, the variation of the principle components matrix (3x3) is: 

a) First principal component = 96.58% of variation 

b) Second principal component = 3.41% of variation 

c) Third principal component = 0.0001% of variation 

Principle Components analysis shows that the first principle components has the 

biggest variation so it can be picked to be used in finding the original data projection.  

For the normal condition of bioreactor, the variable input is listed in Table 2. 

There was no change in Sc (10 gr/L) and D (0.00277778 h
-1

) for over time of 

simulation. While the value of S2 changed to be two times of initial value at the 

specific step time (from 0.07 mol/L to be 0.21 mol/L). The respond of simulator 

is shown in Fig. 4.  

 

Table 2. Input Variables for Normal State Plant. 

Input Variable Value 

A1 (Sc) 0 

A2 (S2) 2 

A3 (D) 0 

T (temperature) 30±1
○
C 

 

By looking at the Fig. 4 can be concluded that the increasing of S2 

concentration still result normal condition of the bioreactor. The substrate 

processed properly by the biomass, which marked by growing biomass and the 

reduction in COD. In Fig. 5 is shows the Hotelling control chart of this 

simulation. The value of T
2
 is never increase above upper control limit (UCL) of 

the control chart.  

To obtain the organic overload condition, the thing to do is add the 

concentrations of the substrate which was represented by the larger change of S2 

(become sixteen times of initial value, see Table 3), as one cause of excessive 

substrate concentration [9]. The respond of simulator and the hotelling T
2
 control 

chart for this case as shown in Figs. 6 and 7 respectively. From this, it can be 

concluded that the bioreactor did not produce methane anymore and pH values 
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down to 3.8 because biomass is not capable of processing the excessive substrate 

concentration, so that the substrates were toxic to microorganisms.  

 

 

Fig. 4. Model Respond with Increase of S2 concentration (A2=2). 

0 500 1000 1500
0

5

10

15

20

25

30

35

T
2

sample  

Fig. 5. Hotelling T
2
 Control Chart for A2=2. 

 

Table 3. Input Variables for Organic Overload State Plant. 

Input Variable Value 

A1 (Sc) 0 

A2 (S2) 16 

A3 (D) 0 

T (temperature) 30±1
○
C 

 

 



Recent Developments of Monitoring in the Anaerobic Bioreactor System     67 

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

 
Fig. 6. Model Respond with Increase of S2 Concentration (A2=16). 

 

0 500 1000 1500
0

5

10

15

20

25

30

35

T
2

sample  
Fig. 7. Hotelling T

2
 Control Chart for A2=16. 

The hydraulic overload condition was simulated by changing the dilution rate 

(D) to the excess value (four times to initial value) as shown in Table 4.  

 

Table 4. Input Variables for Hydraulic Overload State Plant. 

Input Variable Value 

A1 (Sc) 0 

A2 (S2) 0 

A3 (D) 4 

T (temperature) 30±1
○
C 
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The respond of the simulator for this case is the same with one for the organic 

overload case, as shown in Fig. 8. The T
2
 values are above the upper control limit 

of the hotelling T² control chart, as shown in Fig. 9. The same result is obtained 

for the temperature change case described in Table 5 (from 30±1
○
C to be 

41±1
○
C), as shown in Figs. 10 and 11 for the respond and the hotelling T² control 

chart respectively.  

 
Fig. 8. Model Respond with Increase of Dilution Rate (A3=4). 
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Fig. 9. Hotelling T

2
 Control Chart for A3=4. 

 

 

Table 5. Input Variables for Temperature Fluctuation State Plant. 

Input Variable Value 

A1 (Sc) 0 

A2 (S2) 10 

A3 (D) 4 

T (temperature) 41±1
○
C 
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Fig. 10. Model Respond with Increase of Temperature (T=41±1

o
C). 
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Fig. 11. Hotelling T

2
 Control Chart for T=41±1

o
C. 

 

• Determining the membership function for fuzzy Input  

Based on the T² value of the first principal component for every state mode, then 

the mean value and its deviation was got as follows: 

 

Table 6. Mean and Standard Deviation of T
2
 at each State Plant. 

State Mean Standard Deviation 

Normal 0.9145 0.6205 

Hydraulic Overload 2.5 0.4515 

Organic Overload 4.015 0.407 

Temperature disturb 10.54 2.74 
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A fuzzy membership function was made due to each state by using Gaussian 

function. The result is shown in Fig. 12.  
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Fig. 12. Input Membership Function. 

 

• Mode state classification 

The proposed monitoring system had been applied to the anaerobic bioreactor 

model. To investigate the performance of the monitoring system, it was conducted 

three experiments due to four mode state. The simulation result is shown in 

Tables 7 to 9. Based on the results, it is shown that the proposed monitoring 

system yields decision of the state condition correctly. 

 

Table 7. Simulation Results for Dilution Rate Change. 

Condition 
Input Value Classification  

A1 A2 A3 T Result 

1 0 0 2 30±1 Normal 

2 0 0 4 30±1 Hydraulic Overload 

3 0 0 6 30±1 Hydraulic Overload 

4 0 0 7 30±1 Hydraulic Overload 

5 0 0 8 30±1 Hydraulic Overload 

 

 

Table 8. Simulation Results for Substrate S2 Change. 

Trail 
Input Value Classification  

A1 A2 A3 T Result 

1 0 15 0 30±1 Normal 

2 0 16 0 30±1 Organic Overload 

3 0 17 0 30±1 Organic Overload 

4 0 18 0 30±1 Organic Overload 

5 0 19 0 30±1 Organic Overload 
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Table 9. Simulation Results for Temperature Change. 

Trail 
Input Value Classification  

A1 A2 A3 T Result 

1  0 0 0 30±1 Normal 

2  0 0 0 20±1 Temperature fluctuations 

3  0 0 0 22±1 Temperature fluctuations 

4  0 0 0 46±1 Temperature fluctuations 

5  0 0 0 47±1 Temperature fluctuations 

 

 

 

5.  Conclusions 

This research presented and discussed an approach of a (MSPC) model capability 

on replacing the conventional methods univariate Statistical Process Control 

(SPC) to analyze the state of the multivariate process of anaerobic bioreactor for 

performing SPC in a multivariate process, explicitly incorporating measurement 

uncertainty information. Moreover several conclusions, namely: graph control 

Hotelling T
2
 from the principle component gives a different pattern for each state 

and membership function using the one main component can detect conditions 

that happen. 

It is the generalization of the present latent variable approach to MSPC 

based on PCA to a more general situation where measurement uncertainties 

can be vary from observation to observation. A statistical model was defined 

and statistics analogous to T
2
 and Q were derived, that allow one to monitor 

both the within model variability as well as the variability around the 

identified model. Furthermore, this approach adequately handles the presence 

of missing data in a simple and consistent way. Preliminary results point out 

in the direction of advising the use of this framework when measurement 

uncertainties are available and significant noise affects process measurement 

behaviour. Consequently, the approach has been implemented and tested in 

examples that do cover dozens of variables. Practical, in larger scale 

problems, a similar methodology may be applied over a subset of variables 

where heteroscedasticity is believed to be more crucial. 

Overall simulation results shown that the proposed algorithms is capable for 

monitoring four conditions that occurred in the bioreactor with 100% success rate. 

While some suggestions may be submitted for further research are 

increasing measurement variables and state modes that may be occurred in 

bioreactor. Furthermore, the algorithm should be developed for real time 

application in a real plant. 
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