Sholeh, Aan Khoirul (2022) Penerapan Metode K-Nearest Neighbor Untuk Klasifikasi Mutu Biji Kacang Panjang (Vigna Sinensis L.). Undergraduate thesis, POLITEKNIK NEGERI JEMBER.
Text (Abstrsct)
Abstrak.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (8kB) |
|
Text (Bab 1 Pendahuluan)
BAB 1.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (116kB) |
|
Text (Daftar Pustaka)
Daftar Pustaka.pdf - Submitted Version Available under License Creative Commons Attribution Share Alike. Download (116kB) |
|
Text (Laporan Lengkap)
FULL TEKS.pdf Restricted to Registered users only Download (2MB) | Request a copy |
Abstract
Based on the research results, a quality classification program for long bean seeds based on texture extraction has been developed. Meanwhile, texture based feature extraction uses the GLCM (Gray Level Co-occurrence Matrix) feature values, namely ASM (Angular Second Moment), Correlation, and Entopy with an angle of 0 °, 45 °, 90 ° and 135 °. The classification testing process uses the KNN (K-Nearest Neighbor) method with 240 training data and 60 test data for three classes, namely high quality, medium quality, and low quality black long bean seeds. Results of the percentage accuracy of the K-Nearest method Neighbor (KNN) is able to classify the quality of black long bean seeds. The value of the closest neighbor (k), which is 66, can identify the system with an accuracy level of 66.667%.
Item Type: | Thesis (Undergraduate) | ||||||
---|---|---|---|---|---|---|---|
Contributors: |
|
||||||
Uncontrolled Keywords: | Digital Image Processing, K-Nearest Neighbor, Gray Level CoOccurrence Matrix, long beans | ||||||
Subjects: | 410 - Rumpun Ilmu Teknik > 450 - Teknik Elektro dan Informatika > 458 - Teknik Informatika | ||||||
Divisions: | Jurusan Teknologi Informasi > Prodi D4 Teknik Informatika > Tugas Akhir | ||||||
Depositing User: | Aan Khoirul Sholeh | ||||||
Date Deposited: | 05 Sep 2022 02:55 | ||||||
Last Modified: | 05 Sep 2022 02:57 | ||||||
URI: | https://sipora.polije.ac.id/id/eprint/16203 |
Actions (login required)
View Item |